Description
You are given a tree. If we select 2 distinct nodes uniformly at random, what's the probability that the distance between these 2 nodes is a prime number?
The first line contains a number N: the number of nodes in this tree.
The following N-1 lines contain pairs a[i] and b[i], which means there is an edge with length 1 between a[i] and b[i].
Output a real number denote the probability we want.
You'll get accept if the difference between your answer and standard answer is no more than 10^-6.
2 ≤ N ≤ 50,000
The input must be a tree.
Input: 5 1 2 2 3 3 4 4 5 Output: 0.5
We have C(5, 2) = 10 choices, and these 5 of them have a prime distance:
1-3, 2-4, 3-5: 2
1-4, 2-5: 3
Note that 1 is not a prime number.
Hint
Languages: ADA, ASM, BASH, BF, C, C99 strict, CAML, CLOJ, CLPS, CPP 4.3.2, CPP 4.9.2, CPP14, CS2, D, ERL, FORT, FS, GO, HASK, ICK, ICON, JAVA, JS, LISP clisp, LISP sbcl, LUA, NEM, NICE, NODEJS, PAS fpc, PAS gpc, PERL, PERL6, PHP, PIKE, PRLG, PYTH, PYTH 3.1.2, RUBY, SCALA, SCM guile, SCM qobi, ST, TCL, TEXT, WSPC
树分治加上FFT优化,之前一直超时,原来是数组重复使用导致的,卡了好久。
#include<cmath> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; typedef long long LL; const double pi = acos(-1.0); const int low(int x) { return x&-x; } const int INF = 0x7FFFFFFF; const int mod = 1e9 + 7; const int maxn = 1e5 + 10; int n, K, x, y, p[maxn], f[maxn], tot; class FFT { private: const static int maxn = 270000;//要注意长度是2^k方 class Plural { public: double x, y; Plural(double x = 0.0, double y = 0.0) :x(x), y(y) {} Plural operator +(const Plural &a) { return Plural(x + a.x, y + a.y); } Plural operator -(const Plural &a) { return Plural(x - a.x, y - a.y); } Plural operator *(const Plural &a) { return Plural(x*a.x - y*a.y, x*a.y + y*a.x); } Plural operator /(const double &u) { return Plural(x / u, y / u); } };//定义复数的相关运算 Plural x[maxn];// x1[maxn], x2[maxn]; Plural y[maxn];// y1[maxn], y2[maxn]; int X[maxn]; int n, len; public: int reverse(int x) { int ans = 0; for (int i = 1, j = n >> 1; j; i <<= 1, j >>= 1) if (x&i) ans |= j; return ans; }//数字倒序,FFT的初始步骤 Plural w(double x, double y) { return Plural(cos(2 * pi * x / y), -sin(2 * pi * x / y)); } void setx(int len, int *c) { this->len = len; for (n = len + len + 1; n != low(n); n += low(n));//这里要注意取值 for (int i = 0; i < n; i++) { if (i > len) x[i] = Plural(0, 0); else { x[i] = Plural(c[i], 0); X[i] = c[i]; } } } void fft(Plural*x, Plural*y, int flag) { for (int i = 0; i < n; i++) y[i] = x[reverse(i)]; for (int i = 1; i < n; i <<= 1) { Plural uu = w(flag, i + i); for (int j = 0; j < n; j += i + i) { Plural u(1, 0); for (int k = j; k < j + i; k++) { Plural a = y[k]; //w(flag*(k - j), i + i) 可以去掉u和uu用这个代替,精度高些,代价是耗时多了 Plural b = u * y[k + i]; y[k] = a + b; y[k + i] = a - b; u = u*uu; } } } if (flag == -1) for (int i = 0; i < n; i++) y[i] = y[i] / n; }//1是FFT,-1是IFFT,答案数组是y数组 LL solve() { fft(x, y, 1); for (int i = 0; i < n; i++) y[i] = y[i] * y[i]; fft(y, x, -1); LL res = 0, ans = 0; for (int i = 0, j; p[i] < n; i++) { j = p[i]; ans = (LL)(x[j].x + 0.5);//调整精度 if (!(j & 1) && (j >> 1) <= len) ans -= X[j >> 1]; ans >>= 1; res += ans; } return res; } }fft; struct Tree { int ft[maxn], nt[maxn], u[maxn], sz; int vis[maxn], cnt[maxn], mx[maxn], flag, h[maxn], fd[maxn]; void clear(int n) { mx[sz = flag = 0] = INF; for (int i = 1; i <= n; i++) { ft[i] = -1; vis[i] = 0; h[i] = 0; } } void AddEdge(int x, int y) { u[sz] = y; nt[sz] = ft[x]; ft[x] = sz++; } int dfs(int x, int fa, int sum) { int ans = mx[x] = 0; cnt[x] = 1; for (int i = ft[x]; i != -1; i = nt[i]) { if (vis[u[i]] || u[i] == fa) continue; int y = dfs(u[i], x, sum); if (mx[y]<mx[ans]) ans = y; cnt[x] += cnt[u[i]]; mx[x] = max(mx[x], cnt[u[i]]); } mx[x] = max(mx[x], sum - cnt[x]); return mx[x] < mx[ans] ? x : ans; } int get(int x, int fa, int dep) { int ans = dep; if (h[dep] != flag) h[dep] = flag, fd[dep] = 0; fd[dep]++; for (int i = ft[x]; i != -1; i = nt[i]) { if (u[i] == fa || vis[u[i]]) continue; ans = max(ans, get(u[i], x, dep + 1)); } return ans; } LL find(int x, int dep) { ++flag; fd[0] = 0; int len = get(x, -1, dep); fft.setx(len, fd); return fft.solve(); } LL work(int x, int sum) { int y = dfs(x, -1, sum); LL ans = find(y, 0); vis[y] = 1; for (int i = ft[y]; i != -1; i = nt[i]) { if (vis[u[i]]) continue; if (cnt[u[i]] > cnt[y]) cnt[u[i]] = sum - cnt[y]; ans -= find(u[i], 1); ans += work(u[i], cnt[u[i]]); } return ans; } }solve; void read(int &x) { char ch; while ((ch = getchar()) < '0' || ch > '9'); x = ch - '0'; while ((ch = getchar()) >= '0' && ch <= '9') x = x * 10 + ch - '0'; } void init() { f[0] = f[1] = 1; for (int i = 2; i < maxn; i++) { if (!f[i]) p[tot++] = i; for (int j = 0; j < tot&&i*p[j]<maxn; j++) { f[i*p[j]] = 1; if (i%p[j] == 0) break; } } } int main() { init(); while (~scanf("%d", &n)) { solve.clear(n); for (int i = 1; i < n; i++) { read(x); read(y); solve.AddEdge(x, y); solve.AddEdge(y, x); } printf("%.6lf\n", solve.work(1, n) * 2.0 / n / (n - 1)); } return 0; }