ztr loves lucky numbers
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 918 Accepted Submission(s): 389
Problem Description
ztr loves lucky numbers. Everybody knows that positive integers are lucky if their decimal representation doesn't contain digits other than 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
Lucky number is super lucky if it's decimal representation contains equal amount of digits 4 and 7. For example, numbers 47, 7744, 474477 are super lucky and 4, 744, 467 are not.
One day ztr came across a positive integer n. Help him to find the least super lucky number which is not less than n.
Input
There are T
(1≤n≤105)
cases
For each cases:
The only line contains a positive integer
n(1≤n≤1018) . This number doesn't have leading zeroes.
Output
For each cases
Output the answer
Sample Input
Sample Output
Source
BestCoder Round #82 (div.2)
问题描述
ztr喜欢幸运数字,他对于幸运数字有两个要求
1:十进制表示法下只包含4、7
2:十进制表示法下4和7的数量相等
比如47,474477就是
而4,744,467则不是
现在ztr想知道最小的但不小于n的幸运数字是多少
输入描述
有T(1\leq\;T\leq\;10^{5})T(1≤T≤105)组数据,每组数据一个正整数nn,1\leq\;n\leq\;10^{18}1≤n≤1018
输出描述
有TT行,每行即答案
输入样例
2
4500
47
输出样例
4747
47
Hint
请尽可能地优化算法,考虑全面
//没啥说的,就是一个dfs模拟,但是得注意一个特判,见代码
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
#define INF 0x3f3f3f3f
#define ll long long
#define N 100010
using namespace std;
ll a[N];
int cnt;
void dfs(int l,int r,int len,ll num)
{
if(l>len/2||r>len/2) return ;
if(l+r==len&&l==r)
{
a[cnt++]=num;
return ;
}
if(l<=len/2) dfs(l+1,r,len,num*10+4);
if(r<=len/2) dfs(l,r+1,len,num*10+7);
}
int main()
{
cnt=0;
for(int i=2;i<=18;i+=2)
dfs(0,0,i,0);
int t;
ll n;
scanf("%d",&t);
while(t--)
{
scanf("%lld",&n);
if(n>777777777444444444ll) //特判
printf("44444444447777777777\n");
else
printf("%lld\n",a[lower_bound(a,a+cnt,n)-a]);
}
return 0;
}