PAT 1103. Integer Factorization (30)

1103. Integer Factorization (30)

时间限制
1200 ms
内存限制
65536 kB
代码长度限制
16000 B
判题程序
Standard
作者
CHEN, Yue

The K-P factorization of a positive integer N is to write N as the sum of the P-th power of K positive integers. You are supposed to write a program to find the K-P factorization of N for any positive integers N, K and P.

Input Specification:

Each input file contains one test case which gives in a line the three positive integers N (<=400), K (<=N) and P (1<P<=7). The numbers in a line are separated by a space.

Output Specification:

For each case, if the solution exists, output in the format:

N = n1^P + ... nK^P

where ni (i=1, ... K) is the i-th factor. All the factors must be printed in non-increasing order.

Note: the solution may not be unique. For example, the 5-2 factorization of 169 has 9 solutions, such as 122 + 42 + 22 + 22 + 12, or 112 + 62 + 22 + 22 + 22, or more. You must output the one with the maximum sum of the factors. If there is a tie, the largest factor sequence must be chosen -- sequence { a1, a2, ... aK } is said to be larger than { b1, b2, ... bK } if there exists 1<=L<=K such that ai=bi for i<L and aL>bL

If there is no solution, simple output "Impossible".

Sample Input 1:
169 5 2
Sample Output 1:
169 = 6^2 + 6^2 + 6^2 + 6^2 + 5^2
Sample Input 2:
169 167 3
Sample Output 2:
Impossible


题意看一下数据应该能看懂

因为数据比较小,所以直接dfs暴力搜索 + 剪枝 就行了

dfs(int start, int x, int step) //start为此时的系数, x为N剩下的值, step为系数的个数


#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <string>
#include <cmath>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
const double PI = acos(-1.0);
using namespace std;
#define esp  1e-8
int n, k, p;
int a[500];
int b[500], tot, temp;
int power(int a, int b)
{
	int ans = 1; 
	while(b)
	{
		if(b & 1)
			ans = a * ans;
		b >>= 1;
		a = a * a;
	}
	return ans;
}
void dfs(int start, int x, int step)
{
	x -= power(start, p);
	b[step ++] = start;
	if(step == k && x == 0)
	{
		int s = 0;
		for(int i = 0; i < step; ++ i)
		{
			s += b[i];
		}
		if(s >= a[k]) //如果系数和比前面的大就替换掉
		{
			for(int i = 0; i < step; ++ i)
			{
				a[i] = b[i];
			}
			temp = 1;
		}
		a[k] = s;把和保存在a[k]
		return;
	}
	if(x <= 0 || step >= k)
	{
		return ;
	}
	for(int i = start; power(i, p) <= x; ++ i)
	{
		if((i * (k - step)) > x) //注意剪枝
			break;
		dfs(i, x, step);
	}
	return;
}
int main()
{
	int i, j;
	while(~scanf("%d%d%d", &n, &k, &p))
	{
		temp = 0;
		for(i = 1; power(i, p) <= n; ++ i)
		{
			dfs(i, n, 0);
		}
		if(temp == 0)
			printf("Impossible\n");
		else
		{
			int mm = 0;
			int res = 0;
			sort(a, a + k + 1);
			printf("%d =", n);
			for(i = k - 1; i >= 0; -- i)
			{
				if(i != k - 1)
					printf(" +");
				printf(" %d^%d", a[i], p);

			}
			printf("\n");
		}
	}
}



你可能感兴趣的:(PAT 1103. Integer Factorization (30))