Project Euler 第18题

By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is 23.

   3
  7 5
2 4 6
8 5 9 3

That is, 3 + 7 + 4 + 9 = 23.

Find the maximum total from top to bottom of the triangle below:

                              75
                            95 64
                          17 47 82
                       18 35 87 10
                     20 04 82 47 65
                   19 01 23 75 03 34
                 88 02 77 73 07 63 67
              99 65 04 28 06 16 70 92
           41 41 26 56 83 40 80 70 33
         41 48 72 33 47 32 37 16 94 29
       53 71 44 65 25 43 91 52 97 51 14
     70 11 33 28 77 73 17 78 39 68 17 57
    91 71 52 38 17 14 91 43 58 50 27 29 48
 63 66 04 68 89 53 67 30 73 16 69 87 40 31
04 62 98 27 23 09 70 98 73 93 38 53 60 04 23

NOTE: As there are only 16384 routes, it is possible to solve this problem by trying every route. However, Problem 67, is the same challenge with a triangle containing one-hundred rows; it cannot be solved by brute force, and requires a clever method! ;o)

解法,自下而上,依次求和。

 

你可能感兴趣的:(project)