Solver.hpp Solver.cpp学习

主要实现了一个模板类solver,而且是个抽象类。


首先看一下数据成员
SolverParameter param_;
int iter_;//在测试的时候,需要迭代的次数,即test_iter* batchsize(测试集的)=测试集的大小,测试集batchsize可以在prototxt文件里设置
int current_step_;
shared_ptr<Net<Dtype> > net_;
vector<shared_ptr<Net<Dtype> > > test_nets_;//test net可以有多个
vector<Callback*> callbacks_;//嵌套类,暂时还不知道它的作用


// The root solver that holds root nets (actually containing shared layers)
// in data parallelism
const Solver* const root_solver_;


// A function that can be set by a client of the Solver to provide indication
// that it wants a snapshot saved and/or to exit early.
ActionCallback action_request_function_;


// True iff a request to stop early was received.
bool requested_early_exit_;

然后看一下主要的几个成员函数


===========================构造函数==========================================
会调用Init()方法进行初始化,即Solver scaffolding
template <typename Dtype>
Solver<Dtype>::Solver(const SolverParameter& param, const Solver* root_solver)
    : net_(), callbacks_(), root_solver_(root_solver),
      requested_early_exit_(false) {
  Init(param);
}

===========================Init()方法========================================
会调用InitTrainNet()和InitTestNet()来初始化TrainNet、TestNet
template <typename Dtype>
void Solver<Dtype>::Init(const SolverParameter& param) {
  CHECK(Caffe::root_solver() || root_solver_)
      << "root_solver_ needs to be set for all non-root solvers";
  LOG_IF(INFO, Caffe::root_solver()) << "Initializing solver from parameters: "
    << std::endl << param.DebugString();
  param_ = param;//为solver类的数据成员param_赋值
  CHECK_GE(param_.average_loss(), 1) << "average_loss should be non-negative.";
  CheckSnapshotWritePermissions();
  if (Caffe::root_solver() && param_.random_seed() >= 0) {
    Caffe::set_random_seed(param_.random_seed());//调用Caffe命名空间里的set_random_seed函数,而不是caffe类的set_random_seed函数;param_.random_seed()实际上调用的是::google::protobuf::int64 random_seed()
  }
  // Scaffolding code
  InitTrainNet();
  if (Caffe::root_solver()) {
    InitTestNets();
    LOG(INFO) << "Solver scaffolding done.";
  }
  iter_ = 0;
  current_step_ = 0;
}


===============================InitTrainNet()方法=========================================
template <typename Dtype>
void Solver<Dtype>::InitTrainNet() {
  const int num_train_nets = param_.has_net() + param_.has_net_param() +
      param_.has_train_net() + param_.has_train_net_param();
  const string& field_names = "net, net_param, train_net, train_net_param";
  //只能有一个train net
  CHECK_GE(num_train_nets, 1) << "SolverParameter must specify a train net "
      << "using one of these fields: " << field_names;
  CHECK_LE(num_train_nets, 1) << "SolverParameter must not contain more than "
      << "one of these fields specifying a train_net: " << field_names;
  NetParameter net_param;
  if (param_.has_train_net_param()) {
    LOG_IF(INFO, Caffe::root_solver())
        << "Creating training net specified in train_net_param.";
    net_param.CopyFrom(param_.train_net_param());
  } else if (param_.has_train_net()) {
    LOG_IF(INFO, Caffe::root_solver())
        << "Creating training net from train_net file: " << param_.train_net();
    ReadNetParamsFromTextFileOrDie(param_.train_net(), &net_param);
  }
  if (param_.has_net_param()) {
    LOG_IF(INFO, Caffe::root_solver())
        << "Creating training net specified in net_param.";
    net_param.CopyFrom(param_.net_param());
  }
  if (param_.has_net()) {
    LOG_IF(INFO, Caffe::root_solver())
        << "Creating training net from net file: " << param_.net();
    ReadNetParamsFromTextFileOrDie(param_.net(), &net_param);
  }
  // Set the correct NetState.  We start with the solver defaults (lowest
  // precedence); then, merge in any NetState specified by the net_param itself;
  // finally, merge in any NetState specified by the train_state (highest
  // precedence).
  NetState net_state;
  net_state.set_phase(TRAIN);
  net_state.MergeFrom(net_param.state());//从低到高获取state,最终从最高优先级SolverParameter类型中的train_state,显然这会覆盖掉之前获取的state。
  net_state.MergeFrom(param_.train_state());//这里获取的state可以为Netparameter中的state赋值,然后可以根据LayerParameter中的include和exclude来确定该层是否应该包含在网络中。
  net_param.mutable_state()->CopyFrom(net_state);//这是Initialize train net 的一部分工作。InitTestNets也是如此
  if (Caffe::root_solver()) {
    net_.reset(new Net<Dtype>(net_param));//调用模板类的构造函数,进行net的初始化
  } else {
    net_.reset(new Net<Dtype>(net_param, root_solver_->net_.get()));
  }
}

===================================InitTestNet()方法=======================================
需要注意的是TestNet可以有多个,而TrainNet只能有一个
template <typename Dtype>
void Solver<Dtype>::InitTestNets() {
  CHECK(Caffe::root_solver());
  const bool has_net_param = param_.has_net_param();
  const bool has_net_file = param_.has_net();
  const int num_generic_nets = has_net_param + has_net_file;
  CHECK_LE(num_generic_nets, 1)
      << "Both net_param and net_file may not be specified.";
  const int num_test_net_params = param_.test_net_param_size();
  const int num_test_net_files = param_.test_net_size();
  const int num_test_nets = num_test_net_params + num_test_net_files;
  if (num_generic_nets) {
      CHECK_GE(param_.test_iter_size(), num_test_nets)
          << "test_iter must be specified for each test network.";
  } else {
      CHECK_EQ(param_.test_iter_size(), num_test_nets)
          << "test_iter must be specified for each test network.";
  }
  // If we have a generic net (specified by net or net_param, rather than
  // test_net or test_net_param), we may have an unlimited number of actual
  // test networks -- the actual number is given by the number of remaining
  // test_iters after any test nets specified by test_net_param and/or test_net
  // are evaluated.
  // 可以有多个test net
  const int num_generic_net_instances = param_.test_iter_size() - num_test_nets;
  const int num_test_net_instances = num_test_nets + num_generic_net_instances;//num_test_net_instances由num_test_nets 和 num_generic_net_instances 组成,实际上也就是param_.test_iter_size()
  if (param_.test_state_size()) {
    CHECK_EQ(param_.test_state_size(), num_test_net_instances)
        << "test_state must be unspecified or specified once per test net.";
  }
  if (num_test_net_instances) {
    CHECK_GT(param_.test_interval(), 0);
  }
  int test_net_id = 0;
  vector<string> sources(num_test_net_instances);
  vector<NetParameter> net_params(num_test_net_instances);
  for (int i = 0; i < num_test_net_params; ++i, ++test_net_id) {
      sources[test_net_id] = "test_net_param";
      net_params[test_net_id].CopyFrom(param_.test_net_param(i));
  }
  for (int i = 0; i < num_test_net_files; ++i, ++test_net_id) {
      sources[test_net_id] = "test_net file: " + param_.test_net(i);
      ReadNetParamsFromTextFileOrDie(param_.test_net(i),
          &net_params[test_net_id]);
  }
  const int remaining_test_nets = param_.test_iter_size() - test_net_id;
  if (has_net_param) {
    for (int i = 0; i < remaining_test_nets; ++i, ++test_net_id) {
      sources[test_net_id] = "net_param";
      net_params[test_net_id].CopyFrom(param_.net_param());
    }
  }
  if (has_net_file) {
    for (int i = 0; i < remaining_test_nets; ++i, ++test_net_id) {
      sources[test_net_id] = "net file: " + param_.net();
      ReadNetParamsFromTextFileOrDie(param_.net(), &net_params[test_net_id]);
    }
  }
  test_nets_.resize(num_test_net_instances);
  for (int i = 0; i < num_test_net_instances; ++i) {
    // Set the correct NetState.  We start with the solver defaults (lowest
    // precedence); then, merge in any NetState specified by the net_param
    // itself; finally, merge in any NetState specified by the test_state
    // (highest precedence).
    NetState net_state;
    net_state.set_phase(TEST);
    net_state.MergeFrom(net_params[i].state());
    if (param_.test_state_size()) {
      net_state.MergeFrom(param_.test_state(i));
    }
    net_params[i].mutable_state()->CopyFrom(net_state);
    LOG(INFO)
        << "Creating test net (#" << i << ") specified by " << sources[i];
    if (Caffe::root_solver()) {
      test_nets_[i].reset(new Net<Dtype>(net_params[i]));
    } else {
      test_nets_[i].reset(new Net<Dtype>(net_params[i],
          root_solver_->test_nets_[i].get()));
    }
    test_nets_[i]->set_debug_info(param_.debug_info());
  }
}


=============================Step()方法============================
template <typename Dtype>
void Solver<Dtype>::Step(int iters) {
  vector<Blob<Dtype>*> bottom_vec;
  const int start_iter = iter_;
  const int stop_iter = iter_ + iters;
  int average_loss = this->param_.average_loss();
  vector<Dtype> losses;
  Dtype smoothed_loss = 0;


  while (iter_ < stop_iter) {
    // zero-init the params
    net_->ClearParamDiffs();
    //test_initialization默认为true
    if (param_.test_interval() && iter_ % param_.test_interval() == 0
        && (iter_ > 0 || param_.test_initialization())
        && Caffe::root_solver()) {
      TestAll();
      if (requested_early_exit_) {
        // Break out of the while loop because stop was requested while testing.
        break;
      }
    }


    for (int i = 0; i < callbacks_.size(); ++i) {
      callbacks_[i]->on_start();
    }
    const bool display = param_.display() && iter_ % param_.display() == 0;
    net_->set_debug_info(display && param_.debug_info());
    // accumulate the loss and gradient
    Dtype loss = 0;
    for (int i = 0; i < param_.iter_size(); ++i) {
      loss += net_->ForwardBackward(bottom_vec);
    }
    loss /= param_.iter_size();//accumulate(累积) gradients over `iter_size` x `batch_size` instances。默认情况下,iter_size=1,即默认情况下,一个iteratio一个batch
    // average the loss across iterations for smoothed reporting.  
    // average_loss [default = 1]——> Display the loss averaged over the last average_loss iterations
    if (losses.size() < average_loss) {
      losses.push_back(loss);
      int size = losses.size();
      smoothed_loss = (smoothed_loss * (size - 1) + loss) / size;
    } else {
      int idx = (iter_ - start_iter) % average_loss;
      smoothed_loss += (loss - losses[idx]) / average_loss;
      losses[idx] = loss;
    }
    if (display) {
      LOG_IF(INFO, Caffe::root_solver()) << "Iteration " << iter_
          << ", loss = " << smoothed_loss;
      const vector<Blob<Dtype>*>& result = net_->output_blobs();
      int score_index = 0;
      for (int j = 0; j < result.size(); ++j) {
        const Dtype* result_vec = result[j]->cpu_data();
        const string& output_name =
            net_->blob_names()[net_->output_blob_indices()[j]];
        const Dtype loss_weight =
            net_->blob_loss_weights()[net_->output_blob_indices()[j]];
        for (int k = 0; k < result[j]->count(); ++k) {
          ostringstream loss_msg_stream;
          if (loss_weight) {
            loss_msg_stream << " (* " << loss_weight
                            << " = " << loss_weight * result_vec[k] << " loss)";
          }
          LOG_IF(INFO, Caffe::root_solver()) << "    Train net output #"
              << score_index++ << ": " << output_name << " = "
              << result_vec[k] << loss_msg_stream.str();
        }
      }
    }
    for (int i = 0; i < callbacks_.size(); ++i) {
      callbacks_[i]->on_gradients_ready();
    }
    ApplyUpdate();


    // Increment the internal iter_ counter -- its value should always indicate
    // the number of times the weights have been updated.
    ++iter_;


    SolverAction::Enum request = GetRequestedAction();


    // Save a snapshot if needed.
    if ((param_.snapshot()
         && iter_ % param_.snapshot() == 0
         && Caffe::root_solver()) ||
         (request == SolverAction::SNAPSHOT)) {
      Snapshot();
    }
    if (SolverAction::STOP == request) {
      requested_early_exit_ = true;
      // Break out of training loop.
      break;
    }
  }
}


=================================Test()方法==============================
template <typename Dtype>
void Solver<Dtype>::Test(const int test_net_id) {
  CHECK(Caffe::root_solver());
  LOG(INFO) << "Iteration " << iter_
            << ", Testing net (#" << test_net_id << ")";
  //检查是否有layer共享于多个网络
  CHECK_NOTNULL(test_nets_[test_net_id].get())->
      ShareTrainedLayersWith(net_.get());
  vector<Dtype> test_score;
  vector<int> test_score_output_id;
  vector<Blob<Dtype>*> bottom_vec;
  const shared_ptr<Net<Dtype> >& test_net = test_nets_[test_net_id];
  Dtype loss = 0;
  for (int i = 0; i < param_.test_iter(test_net_id); ++i) {
    SolverAction::Enum request = GetRequestedAction();
    // Check to see if stoppage of testing/training has been requested.
    while (request != SolverAction::NONE) {
        if (SolverAction::SNAPSHOT == request) {
          Snapshot();
        } else if (SolverAction::STOP == request) {
          requested_early_exit_ = true;
        }
        request = GetRequestedAction();
    }
    if (requested_early_exit_) {
      // break out of test loop.
      break;
    }


    Dtype iter_loss;
    const vector<Blob<Dtype>*>& result =
        test_net->Forward(bottom_vec, &iter_loss);
    if (param_.test_compute_loss()) {
      loss += iter_loss;
    }
    if (i == 0) {
      for (int j = 0; j < result.size(); ++j) {
        const Dtype* result_vec = result[j]->cpu_data();
        for (int k = 0; k < result[j]->count(); ++k) {
          test_score.push_back(result_vec[k]);
          test_score_output_id.push_back(j);
        }
      }
    } else {
      int idx = 0;
      for (int j = 0; j < result.size(); ++j) {
        const Dtype* result_vec = result[j]->cpu_data();
        for (int k = 0; k < result[j]->count(); ++k) {
          test_score[idx++] += result_vec[k];
        }
      }
    }
  }
  if (requested_early_exit_) {
    LOG(INFO)     << "Test interrupted.";
    return;
  }
  if (param_.test_compute_loss()) {
    loss /= param_.test_iter(test_net_id);
    LOG(INFO) << "Test loss: " << loss;
  }
  for (int i = 0; i < test_score.size(); ++i) {
    const int output_blob_index =
        test_net->output_blob_indices()[test_score_output_id[i]];
    const string& output_name = test_net->blob_names()[output_blob_index];
    const Dtype loss_weight = test_net->blob_loss_weights()[output_blob_index];
    ostringstream loss_msg_stream;
    const Dtype mean_score = test_score[i] / param_.test_iter(test_net_id);//求多次迭代Loss的平均值,也就是求多个batch的平局值,因为一次迭代用的是一个test batch-size 的图片
    if (loss_weight) {
      loss_msg_stream << " (* " << loss_weight
                      << " = " << loss_weight * mean_score << " loss)";
    }
    LOG(INFO) << "    Test net output #" << i << ": " << output_name << " = "
              << mean_score << loss_msg_stream.str();
  }
}


=======================================Solve()方法:===================================================
对整个网络进行训练(也就是你运行Caffe训练某个模型)的时候,实际上是在运行caffe.cpp中的train( )函数,而这个函数实际上是实例化一个Solver对象,初始化后调用了Solver中的Solve( )方法
调用此方法训练网络,其中会调用Step()方法来迭代,迭代 param_.max_iter() - iter_ 次
template <typename Dtype>
void Solver<Dtype>::Solve(const char* resume_file) {
  CHECK(Caffe::root_solver());
  LOG(INFO) << "Solving " << net_->name();
  LOG(INFO) << "Learning Rate Policy: " << param_.lr_policy();


  // Initialize to false every time we start solving.
  requested_early_exit_ = false;


  if (resume_file) {
    LOG(INFO) << "Restoring previous solver status from " << resume_file;
    Restore(resume_file);
  }


  // For a network that is trained by the solver, no bottom or top vecs
  // should be given, and we will just provide dummy vecs.
  Step(param_.max_iter() - iter_);
  // If we haven't already, save a snapshot after optimization, unless
  // overridden by setting snapshot_after_train := false
  if (param_.snapshot_after_train()
      && (!param_.snapshot() || iter_ % param_.snapshot() != 0)) {
    Snapshot();
  }
  if (requested_early_exit_) {
    LOG(INFO) << "Optimization stopped early.";
    return;
  }
  // After the optimization is done, run an additional train and test pass to
  // display the train and test loss/outputs if appropriate (based on the
  // display and test_interval settings, respectively).  Unlike in the rest of
  // training, for the train net we only run a forward pass as we've already
  // updated the parameters "max_iter" times -- this final pass is only done to
  // display the loss, which is computed in the forward pass.
  if (param_.display() && iter_ % param_.display() == 0) {
    Dtype loss;
    net_->ForwardPrefilled(&loss);
    LOG(INFO) << "Iteration " << iter_ << ", loss = " << loss;
  }
  if (param_.test_interval() && iter_ % param_.test_interval() == 0) {
    TestAll();
  }
  LOG(INFO) << "Optimization Done.";
}

Snapshot()输出当前网络状态到一个文件中。


Restore()从一个文件中读入网络状态,并可以从那个状态恢复。


参考文献:http://blog.csdn.net/qq_16055159/article/details/45068147

你可能感兴趣的:(Solver.hpp Solver.cpp学习)