Codeforces Round #319 (Div. 2) B. Modulo Sum

借鉴自http://blog.csdn.net/u014492306/article/details/48369857

B. Modulo Sum
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

You are given a sequence of numbers a1, a2, ..., an, and a number m.

Check if it is possible to choose a non-empty subsequence aij such that the sum of numbers in this subsequence is divisible by m.

Input

The first line contains two numbers, n and m (1 ≤ n ≤ 1062 ≤ m ≤ 103) — the size of the original sequence and the number such that sum should be divisible by it.

The second line contains n integers a1, a2, ..., an (0 ≤ ai ≤ 109).

Output

In the single line print either "YES" (without the quotes) if there exists the sought subsequence, or "NO" (without the quotes), if such subsequence doesn't exist.

Sample test(s)
input
3 5
1 2 3
output
YES
input
1 6
5
output
NO
input
4 6
3 1 1 3
output
YES
input
6 6
5 5 5 5 5 5
output
YES
Note

In the first sample test you can choose numbers 2 and 3, the sum of which is divisible by 5.

In the second sample test the single non-empty subsequence of numbers is a single number 5. Number 5 is not divisible by 6, that is, the sought subsequence doesn't exist.

In the third sample test you need to choose two numbers 3 on the ends.

In the fourth sample test you can take the whole subsequence.

借鉴了题解思路。

当n>=m时,抽屉原理即可知必定存在子列可整除m。

当n<m时,由于m范围较小,可直接计算n个数字所能产生的所有余数,最后检测0是否存在即可。代码中为了防止重复将本身计算,用了一些小技巧,值得学习

#include <algorithm>
#include <iostream>
#include <sstream>
#include <cstring>
#include <cstdlib>
#include <string>
#include <vector>
#include <cstdio>
#include <stack>
#include <cmath>
#include <queue>
#include <map>
#include <set>
using namespace std;
#define N 1000005
#define INF 0x3f3f3f3f;

int a[N],f[1005][2];

int main() {
    int n,m;
    
    while (cin>>n>>m) {
        for (int i=0; i<n; i++) {
            scanf("%d",&a[i]);
        }
        memset(f, 0, sizeof(f));
        if (n>=m) {
            cout<<"YES"<<endl;
        }
        else {
            int pr=0,nt=1;
            for (int i=0; i<n; i++) {
                nt^=1;
                pr^=1;
                f[a[i]%m][nt]=1;
                for (int j=0; j<m; j++) {
                    if (f[j][pr]) {
                        f[(j+a[i])%m][nt]=f[j][nt]=1;
                    }
                }
            }
        if (f[0][nt]==1) {
            cout<<"YES"<<endl;
        }
        else cout<<"NO"<<endl;
        }
    }
    return 0;
}


你可能感兴趣的:(Codeforces Round #319 (Div. 2) B. Modulo Sum)