CodeForces 7C(扩展欧几里德解方程)

Description

A line on the plane is described by an equation Ax + By + C = 0. You are to find any point on this line, whose coordinates are integer numbers from  - 5·1018 to 5·1018 inclusive, or to find out that such points do not exist.

Input

The first line contains three integers AB and C ( - 2·109 ≤ A, B, C ≤ 2·109) — corresponding coefficients of the line equation. It is guaranteed that A2 + B2 > 0.

Output

If the required point exists, output its coordinates, otherwise output -1.

Sample Input

Input
2 5 3
Output

6 -3


第一道扩展欧几里德,按模板写的


代码如下:

#include<stdio.h>
int gcd(int a,int b){
	return b?gcd(b,a%b):a;
}
long long  exgcd(long long a,long long b,long long  &x,long long  &y){
	if(b==0){
		x=1;
		y=0;
		return a;
	}
	long long  r=exgcd(b,a%b,x,y);
	long long  t=x;
	x=y;
	y=t-a/b*y;
	return r;
}
int main(){
      int t;
      long long  a,b,c;
	  while(scanf("%lld%lld%lld",&a,&b,&c)!=EOF){
	  	c=-c;
	  	long long  res=gcd(a,b);
	  	if(c%res!=0){
	  		printf("-1\n");
	  		continue;
	  	}
	  	long long x,y;
	  	exgcd(a,b,x,y);
        printf("%lld %lld\n",x*(c/res),y*(c/res));
	  }
	return 0;
}




你可能感兴趣的:(CodeForces 7C(扩展欧几里德解方程))