传送门
CardTime Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 791 Accepted Submission(s): 315 Special Judge
Problem Description
There are x cards on the desk, they are numbered from 1 to x. The score of the card which is numbered i(1<=i<=x) is i. Every round BieBie picks one card out of the x cards,then puts it back. He does the same operation for b rounds. Assume that the score of the j-th card he picks is Sj . You are expected to calculate the expectation of the sum of the different score he picks.
Input
Multi test cases,the first line of the input is a number T which indicates the number of test cases.
In the next T lines, every line contain x,b separated by exactly one space. [Technique specification] All numbers are integers. 1<=T<=500000 1<=x<=100000 1<=b<=5
Output
Each case occupies one line. The output format is Case #id: ans, here id is the data number which starts from 1,ans is the expectation, accurate to 3 decimal places.
See the sample for more details.
Sample Input
Sample Output
Source
BestCoder Round #26
|
桌子上有x张牌,每张牌从1到x编号,编号为i(1<=i<=x)的牌上面标记着分数i , 每次从这x张牌中随机抽出一张牌,然后放回,执行b次操作,记第j次取出的牌上面分数是 Sj , 问b次操作后不同种类分数之和的期望是多少。
样例解释:
对于第一组数据所有牌型的组合为(1, 1, 1),(1,1,2),(1,2,1),(1,2,2),(2,1,1),(2,1,2),(2,2,1),(2,2,2)
对于(1,1,1)这个组合,他只有一种数字,所以不同数字之和为1
而对于(1,2,1)有两种不同的数字,即1和2,所以不同数字之和是3。
所以对应组合的不同数字之和为1,3,3,3,3,3,3,2
所以期望为(1+3+3+3+3+3+3+2)/8=2.625
解题思路:
我们先考虑一下每一个数出现的概率,首先我们计算有这 x 个数出现b次的总数肯定就是 x^b,那么x-1个数出现b次的总数就是 (x-1)^b:所以一个数出现的总数就是x^b-(x-1)^b,那么概率就是(x^b-(x-1)^b)/x^b,期望等于什么呢,期望等于的应该是每个数出现的概率乘以每个数的值,又因为期望具有线性关系:即E(ax1+bx2+...)=aE(x1)+bE(x2)+...
所以我们要求的期望就等于(x^b-(x-1)^b)/x^b*(1+2+3+...+x)化简得:
(1-((x-1)/x)^b)*(x+1)*x/2(最终公式)可以求了:
My Code:
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> using namespace std; int main() { int T; double x, b; scanf("%d",&T); for(int cas=1; cas<=T; cas++) { scanf("%lf%lf",&x,&b); double sum = x*(x+1)/2; double tmp = 1-pow(1-1.0/x,b); ///cout<<tmp<<endl; printf("Case #%d: %.3lf\n",cas,sum*tmp); } return 0; }