从源码理解ArrayList.java
package java.util; import java.util.function.Consumer; import java.util.function.Predicate; import java.util.function.UnaryOperator; /** * 可变数组实现了List接口,实现了所有列表操作,允许空值null。还提供了操作数组大小的方法用以内部使用。 * 除了不支持并发访问,这个类完全等同于Vector * 以下几个操作都是常数时间:size、isEmpty、get、set、iterator和listIterator * add操作均摊时间为常数时间 * 其他操作是线性时间,常数因子比LinkedList实现小。 * 每个ArrayList实例都有一个capacity。capacity是list中用于保存元素的数组大小。大于等于list的Size。 * 添加元素后,capacity自增。 * * 应用可以在添加大量元素之前,通过ensureCapacity操作提升容量,这样可以减少因为容量增长造成的内存重新分配。 * 该实现不支持并发。多线程下需要外部同步:List list = Collections.synchronizedList(new ArrayList(...)); * * 迭代器iterator和listIterator都是快速失败(fail-fast)的 * 并发访问下行为未定。 */ /** * 支持泛型,继承自AbstractList,实现了List、RandomAccess、Cloneable、java.io.Serializable接口 * AbstractList提供了List接口的默认实现(个别方法为抽象方法) * List接口定义了列表必须实现的方法 * RandomAccess是一个标记接口,接口内没有定义任何内容 * 实现了Cloneable接口的类,可以调用Object.clone()方法返回该对象的浅拷贝 * 通过实现java.io.Serializable接口以启用其序列化功能。未实现此接口的类将无法使其任何状态序列化或 反序列化。 * 序列化接口没有方法或字段,仅用于标识可序列化的语义。 */ public class ArrayList<E> extends AbstractList<E> implements List<E>, RandomAccess, Cloneable, java.io.Serializable { private static final long serialVersionUID = 8683452581122892189L; /** * 默认初始容量. */ private static final int DEFAULT_CAPACITY = 10; /** * 所有空实例共享的空数组实例. */ private static final Object[] EMPTY_ELEMENTDATA = {}; /** * 存储ArrayList元素的数组,为空时指向EMPTY_ELEMENTDATA */ transient Object[] elementData; // non-private to simplify nested class access /** * ArrayList的大小 */ private int size; /** * 构造一个具有指定初始容量的空list * @param initialCapacity the initial capacity of the list * @throws IllegalArgumentException if the specified initial capacity * is negative */ public ArrayList(int initialCapacity) { super(); if (initialCapacity < 0) throw new IllegalArgumentException("Illegal Capacity: "+ initialCapacity); this.elementData = new Object[initialCapacity]; } /** * 构造一个具有初始容量10的空list */ public ArrayList() { super(); this.elementData = EMPTY_ELEMENTDATA; } /** * 构造一个包含指定集合中元素的list,按照迭代器返回的顺序 * @param c the collection whose elements are to be placed into this list * @throws NullPointerException if the specified collection is null */ public ArrayList(Collection<? extends E> c) { elementData = c.toArray(); size = elementData.length; // c.toArray might (incorrectly) not return Object[] (see 6260652) //返回若不是Object[]将调用Arrays.copyOf方法将其转为Object[] if (elementData.getClass() != Object[].class) elementData = Arrays.copyOf(elementData, size, Object[].class); } /** * 将ArrayList实例的容量裁剪到list当前大小Size。 * 应用程序使用该操作降低ArrayList实例占用的存储 * 因为清空等一些操作只改变参数而没有释放空间 */ public void trimToSize() { modCount++; if (size < elementData.length) { elementData = Arrays.copyOf(elementData, size); } } /** * 提升ArrayList实例的容量,确保它可以保存至少minCapacity的元素 * @param minCapacity the desired minimum capacity */ public void ensureCapacity(int minCapacity) { //如果数组当前为空,添加元素时最小增长容量为DEFAULT_CAPACITY //否则,增长容量大于0即可 int minExpand = (elementData != EMPTY_ELEMENTDATA) // any size if real element table ? 0 // larger than default for empty table. It's already supposed to be // at default size. : DEFAULT_CAPACITY; if (minCapacity > minExpand) { ensureExplicitCapacity(minCapacity); } } private void ensureCapacityInternal(int minCapacity) { if (elementData == EMPTY_ELEMENTDATA) { minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity); } ensureExplicitCapacity(minCapacity); } private void ensureExplicitCapacity(int minCapacity) { modCount++; //list结构被改变的次数 // overflow-conscious code //目标容量大于当前容量才增长 if (minCapacity - elementData.length > 0) grow(minCapacity); } /** * 数组可分配最大容量,有些虚拟机中会给数组保存头部,尝试分配更大的数组会导致内存溢出 */ private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; /** * 提升容量,保证它可以存储指定参数个元素 * @param minCapacity the desired minimum capacity */ private void grow(int minCapacity) { // overflow-conscious code int oldCapacity = elementData.length; int newCapacity = oldCapacity + (oldCapacity >> 1); if (newCapacity - minCapacity < 0) newCapacity = minCapacity; if (newCapacity - MAX_ARRAY_SIZE > 0) newCapacity = hugeCapacity(minCapacity); // minCapacity is usually close to size, so this is a win: //返回一个内容为原数组元素,大小为新容量的数组赋给elementData elementData = Arrays.copyOf(elementData, newCapacity); } /** * 容量过大,栈溢出 */ private static int hugeCapacity(int minCapacity) { if (minCapacity < 0) // overflow throw new OutOfMemoryError(); return (minCapacity > MAX_ARRAY_SIZE) ? Integer.MAX_VALUE : MAX_ARRAY_SIZE; } /** * Returns the number of elements in this list. * * @return the number of elements in this list */ public int size() { return size; } /** * Returns <tt>true</tt> if this list contains no elements. * * @return <tt>true</tt> if this list contains no elements */ public boolean isEmpty() { //直接返回size是否等于0 return size == 0; } /** * 若列表中包含该元素就返回true,更严格的说,是当且仅当列表只含有一个当前元素时返回true * @param o element whose presence in this list is to be tested * @return <tt>true</tt> if this list contains the specified element */ public boolean contains(Object o) { //indexOf方法返回值与0比较来判断对象是否在list中 return indexOf(o) >= 0; } /** * 通过遍历elementData数组来判断对象是否在list中,若存在,返回首次出现的index(【0,size-1】) * 若不存在,返回-1 * 所以contains方法可以通过indexOf(Object)方法的返回值来判断对象是否被包含在list中 */ public int indexOf(Object o) { if (o == null) { for (int i = 0; i < size; i++) if (elementData[i]==null) return i; } else { for (int i = 0; i < size; i++) if (o.equals(elementData[i])) return i; } return -1; } /** * 返回的是传入对象在elementData数组中最后出现的index值,没有则是-1 */ public int lastIndexOf(Object o) { if (o == null) { //从后向前遍历数组,若遇到object则返回index值,若没有遇到,返回-1 for (int i = size-1; i >= 0; i--) if (elementData[i]==null) return i; } else { for (int i = size-1; i >= 0; i--) if (o.equals(elementData[i])) return i; } return -1; } /** * 返回ArrayList实例的浅表副本(不复制这些元素本身) * @return a clone of this <tt>ArrayList</tt> instance */ public Object clone() { try { //调用父类的clone方法返回一个对象的副本 ArrayList<?> v = (ArrayList<?>) super.clone(); //将返回对象的elementData数组的内容赋值为原对象elementData数组的内容 v.elementData = Arrays.copyOf(elementData, size); //将副本的modCount设置为0 v.modCount = 0; return v; } catch (CloneNotSupportedException e) { // this shouldn't happen, since we are Cloneable throw new InternalError(e); } } /** * 返回一个包含列表中所有元素的数组 * 返回的数组是一个安全的数组,即没有列表中的引用,是一个全新申请的数组 * @return an array containing all of the elements in this list in * proper sequence */ public Object[] toArray() { //拷贝elementData从0到size-1位置的元素到新数组并返回 return Arrays.copyOf(elementData, size); } /** * 返回一个包含列表所有元素的数组,若指定数组和列表大小合适,就在数组中返回元素,否则,重新申请数组空间 * 若指定数组空间有多余,则把紧跟在元素后面的位置设为null * @param a the array into which the elements of the list are to * be stored, if it is big enough; otherwise, a new array of the * same runtime type is allocated for this purpose. * @return an array containing the elements of the list * @throws ArrayStoreException if the runtime type of the specified array * is not a supertype of the runtime type of every element in * this list * @throws NullPointerException if the specified array is null */ @SuppressWarnings("unchecked") public <T> T[] toArray(T[] a) { //如果传入数组的长度小于size,返回一个新的数组,大小为size,类型与传入数组相同 if (a.length < size) // Make a new array of a's runtime type, but my contents: return (T[]) Arrays.copyOf(elementData, size, a.getClass()); //否则,将elementData复制到传入数组并返回传入的数组 System.arraycopy(elementData, 0, a, 0, size); //若传入数组长度大于size,把返回数组的第size个元素置为空 if (a.length > size) a[size] = null; return a; } // Positional Access Operations @SuppressWarnings("unchecked") E elementData(int index) { return (E) elementData[index]; } /** * 返回指定位置的元素,即elementData[index] * @param index index of the element to return * @return the element at the specified position in this list * @throws IndexOutOfBoundsException {@inheritDoc} */ public E get(int index) { //范围检查 rangeCheck(index); return elementData(index); } /** * 将列表中指定位置的元素替换为指定元素 * @param index index of the element to replace * @param element element to be stored at the specified position * @return the element previously at the specified position * @throws IndexOutOfBoundsException {@inheritDoc} */ public E set(int index, E element) { //范围检查 rangeCheck(index); E oldValue = elementData(index); //用新元素替换旧元素 elementData[index] = element; //返回旧元素 return oldValue; } /** * 在列表尾部添加一个元素,容量的扩展将导致数组元素的复制,多次扩展将执行多次整个数组内容的复制。 * 若能提前大致判断list的长度,调用ensureCapacity调整容量,将有效的提高运行速度 */ public boolean add(E e) { //确保不会产生越界 ensureCapacityInternal(size + 1); // Increments modCount!! elementData[size++] = e; return true; } /** * 在指定位置插入元素,当前位置原元素及所有后继元素向右移动一个位置 * @param index index at which the specified element is to be inserted * @param element element to be inserted * @throws IndexOutOfBoundsException {@inheritDoc} */ public void add(int index, E element) { //判断指定位置Index是否超出elementData的界限 rangeCheckForAdd(index); //调用ensureCapacityInternal调整容量(若容量足够则不会扩展) ensureCapacityInternal(size + 1); // Increments modCount!! //调用System.arrayCopy将elementData从Index开始的size-index个元素复制到index+1至size+1的位置 //即index开始的元素都向后移动一个位置,然后将Index位置的值指向element System.arraycopy(elementData, index, elementData, index + 1, size - index); elementData[index] = element; size++; } /** * 删除指定位置的元素,将后继元素向前移动一个位置 * @param index the index of the element to be removed * @return the element that was removed from the list * @throws IndexOutOfBoundsException {@inheritDoc} */ public E remove(int index) { //检查范围 rangeCheck(index); //修改modCount modCount++; //保留将要被移除的元素 E oldValue = elementData(index); int numMoved = size - index - 1; if (numMoved > 0) //将移除位置之后的元素向前挪动一个位置 System.arraycopy(elementData, index+1, elementData, index, numMoved); //将list末尾元素置空(null) elementData[--size] = null; // clear to let GC do its work //返回被移除的元素 return oldValue; } /** * 删除首次出现在列表中的元素,如果不包含该元素,不作变化 * @param o element to be removed from this list, if present * @return <tt>true</tt> if this list contained the specified element */ public boolean remove(Object o) { if (o == null) { //从前向后遍历所有元素 for (int index = 0; index < size; index++) if (elementData[index] == null) { //与remove(index)的不同之处在于跳过边界处理,也不返回被移除的元素 fastRemove(index); return true; } } else { for (int index = 0; index < size; index++) if (o.equals(elementData[index])) { fastRemove(index); return true; } } return false; } /* * 跳过边界检查也不返回删除值的删除函数 */ private void fastRemove(int index) { modCount++; int numMoved = size - index - 1; if (numMoved > 0) System.arraycopy(elementData, index+1, elementData, index, numMoved); elementData[--size] = null; // clear to let GC do its work } /** * 清空列表中的所有元素,操作后列表为空 * clear的时候并没有修改elementData的长度,这使得确定不再修改list内容之后最好调用trimToSize来释放掉一些空间 */ public void clear() { modCount++; // clear to let GC do its work //等待垃圾回收器回收 for (int i = 0; i < size; i++) elementData[i] = null; size = 0; } /** * 将指定集合中的所有元素都添加到列表末尾,以其迭代器返回的顺序添加 * 该操作在多线程情况下行为未定义,需要外部同步 * @param c collection containing elements to be added to this list * @return <tt>true</tt> if this list changed as a result of the call * @throws NullPointerException if the specified collection is null */ public boolean addAll(Collection<? extends E> c) { //先将集合c转换成数组, Object[] a = c.toArray(); //根据转换后数组的长度和ArrayList的size扩展容量 int numNew = a.length; ensureCapacityInternal(size + numNew); // Increments modCount //调用System.arrayCopy方法复制元素到elementData的尾部 System.arraycopy(a, 0, elementData, size, numNew); //调整size size += numNew; //只要集合c的大小不为空,即转换后的数组长度不为0则返回true return numNew != 0; } /** * 将指定集合c中所有元素添加到以index开头的位置中,将当前元素及所有后继元素向右移动,新元素的顺序以迭代器返回顺序 * @param index index at which to insert the first element from the * specified collection * @param c collection containing elements to be added to this list * @return <tt>true</tt> if this list changed as a result of the call * @throws IndexOutOfBoundsException {@inheritDoc} * @throws NullPointerException if the specified collection is null */ public boolean addAll(int index, Collection<? extends E> c) { //先判断Index是否越界 rangeCheckForAdd(index); //与addAll(c)一致 Object[] a = c.toArray(); int numNew = a.length; ensureCapacityInternal(size + numNew); // Increments modCount int numMoved = size - index; if (numMoved > 0) //先将index开始的元素向后移动numNew(c转换为数组后的长度)个位置(也是一个复制的过程) System.arraycopy(elementData, index, elementData, index + numNew, numMoved); //将数组内容复制到elementData的index位置到index+X System.arraycopy(a, 0, elementData, index, numNew); //增加size size += numNew; //集合大小不为空就返回true return numNew != 0; } /** * 删除列表中从fromIndex到toIndex的元素,包含fromIndex,不含toIndex,所有后继元素向前移动 * 如果fromIndex=toIndex,没有修改 * @throws IndexOutOfBoundsException if {@code fromIndex} or * {@code toIndex} is out of range * ({@code fromIndex < 0 || * fromIndex >= size() || * toIndex > size() || * toIndex < fromIndex}) */ protected void removeRange(int fromIndex, int toIndex) { modCount++; int numMoved = size - toIndex; //将elementData从toIndex位置开始的元素向前移动到fromIndex System.arraycopy(elementData, toIndex, elementData, fromIndex, numMoved); // clear to let GC do its work int newSize = size - (toIndex-fromIndex); //将toIndex位置之后的元素全部置空顺便修改size for (int i = newSize; i < size; i++) { elementData[i] = null; } //修改size size = newSize; } /** * 检查给定下标是否在范围内,该方法不检查下标为负数的情况 */ private void rangeCheck(int index) { if (index >= size) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } /** * A version of rangeCheck used by add and addAll. */ private void rangeCheckForAdd(int index) { if (index > size || index < 0) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } /** * Constructs an IndexOutOfBoundsException detail message. * Of the many possible refactorings of the error handling code, * this "outlining" performs best with both server and client VMs. */ private String outOfBoundsMsg(int index) { return "Index: "+index+", Size: "+size; } /** * 删除列表中所有出现在集合c中的元素 * @param c collection containing elements to be removed from this list * @return {@code true} if this list changed as a result of the call * @throws ClassCastException if the class of an element of this list * is incompatible with the specified collection * (<a href="Collection.html#optional-restrictions">optional</a>) * @throws NullPointerException if this list contains a null element and the * specified collection does not permit null elements * (<a href="Collection.html#optional-restrictions">optional</a>), * or if the specified collection is null * @see Collection#contains(Object) */ public boolean removeAll(Collection<?> c) { Objects.requireNonNull(c); return batchRemove(c, false); } /** * 只保留列表中出现在集合c中的元素 * @param c collection containing elements to be retained in this list * @return {@code true} if this list changed as a result of the call * @throws ClassCastException if the class of an element of this list * is incompatible with the specified collection * (<a href="Collection.html#optional-restrictions">optional</a>) * @throws NullPointerException if this list contains a null element and the * specified collection does not permit null elements * (<a href="Collection.html#optional-restrictions">optional</a>), * or if the specified collection is null * @see Collection#contains(Object) */ public boolean retainAll(Collection<?> c) { Objects.requireNonNull(c); return batchRemove(c, true); } /** * 批量删除 * complement为false,则为删除列表中出现在集合c中的元素 * complement为true,则为删除列表中未出现在集合c中的元素 */ private boolean batchRemove(Collection<?> c, boolean complement) { final Object[] elementData = this.elementData; int r = 0, w = 0; boolean modified = false; try { for (; r < size; r++) if (c.contains(elementData[r]) == complement) elementData[w++] = elementData[r]; } finally { // Preserve behavioral compatibility with AbstractCollection, // even if c.contains() throws. //循环被中断,将r之后的元素拷贝到w之后 if (r != size) { System.arraycopy(elementData, r, elementData, w, size - r); //修改新数组长度 w += size - r; } //有元素删除了 if (w != size) { // clear to let GC do its work //删除元素 for (int i = w; i < size; i++) elementData[i] = null; modCount += size - w; size = w; modified = true; } } return modified; } /** * Save the state of the <tt>ArrayList</tt> instance to a stream (that * is, serialize it). * * @serialData The length of the array backing the <tt>ArrayList</tt> * instance is emitted (int), followed by all of its elements * (each an <tt>Object</tt>) in the proper order. */ private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException{ // Write out element count, and any hidden stuff int expectedModCount = modCount; s.defaultWriteObject(); // Write out size as capacity for behavioural compatibility with clone() s.writeInt(size); // Write out all elements in the proper order. for (int i=0; i<size; i++) { s.writeObject(elementData[i]); } if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } } /** * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is, * deserialize it). */ private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { elementData = EMPTY_ELEMENTDATA; // Read in size, and any hidden stuff s.defaultReadObject(); // Read in capacity s.readInt(); // ignored if (size > 0) { // be like clone(), allocate array based upon size not capacity ensureCapacityInternal(size); Object[] a = elementData; // Read in all elements in the proper order. for (int i=0; i<size; i++) { a[i] = s.readObject(); } } } /** * Returns a list iterator over the elements in this list (in proper * sequence), starting at the specified position in the list. * The specified index indicates the first element that would be * returned by an initial call to {@link ListIterator#next next}. * An initial call to {@link ListIterator#previous previous} would * return the element with the specified index minus one. * * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>. * * @throws IndexOutOfBoundsException {@inheritDoc} */ public ListIterator<E> listIterator(int index) { if (index < 0 || index > size) throw new IndexOutOfBoundsException("Index: "+index); return new ListItr(index); } /** * Returns a list iterator over the elements in this list (in proper * sequence). * * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>. * * @see #listIterator(int) */ public ListIterator<E> listIterator() { return new ListItr(0); } /** * Returns an iterator over the elements in this list in proper sequence. * * <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>. * * @return an iterator over the elements in this list in proper sequence */ public Iterator<E> iterator() { return new Itr(); } /** * An optimized version of AbstractList.Itr */ private class Itr implements Iterator<E> { int cursor; // index of next element to return int lastRet = -1; // index of last element returned; -1 if no such int expectedModCount = modCount; public boolean hasNext() { return cursor != size; } @SuppressWarnings("unchecked") public E next() { checkForComodification(); int i = cursor; if (i >= size) throw new NoSuchElementException(); Object[] elementData = ArrayList.this.elementData; if (i >= elementData.length) throw new ConcurrentModificationException(); cursor = i + 1; return (E) elementData[lastRet = i]; } public void remove() { if (lastRet < 0) throw new IllegalStateException(); checkForComodification(); try { ArrayList.this.remove(lastRet); cursor = lastRet; lastRet = -1; expectedModCount = modCount; } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } @Override @SuppressWarnings("unchecked") public void forEachRemaining(Consumer<? super E> consumer) { Objects.requireNonNull(consumer); final int size = ArrayList.this.size; int i = cursor; if (i >= size) { return; } final Object[] elementData = ArrayList.this.elementData; if (i >= elementData.length) { throw new ConcurrentModificationException(); } while (i != size && modCount == expectedModCount) { consumer.accept((E) elementData[i++]); } // update once at end of iteration to reduce heap write traffic cursor = i; lastRet = i - 1; checkForComodification(); } final void checkForComodification() { if (modCount != expectedModCount) throw new ConcurrentModificationException(); } } /** * An optimized version of AbstractList.ListItr */ private class ListItr extends Itr implements ListIterator<E> { ListItr(int index) { super(); cursor = index; } public boolean hasPrevious() { return cursor != 0; } public int nextIndex() { return cursor; } public int previousIndex() { return cursor - 1; } @SuppressWarnings("unchecked") public E previous() { checkForComodification(); int i = cursor - 1; if (i < 0) throw new NoSuchElementException(); Object[] elementData = ArrayList.this.elementData; if (i >= elementData.length) throw new ConcurrentModificationException(); cursor = i; return (E) elementData[lastRet = i]; } public void set(E e) { if (lastRet < 0) throw new IllegalStateException(); checkForComodification(); try { ArrayList.this.set(lastRet, e); } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } public void add(E e) { checkForComodification(); try { int i = cursor; ArrayList.this.add(i, e); cursor = i + 1; lastRet = -1; expectedModCount = modCount; } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } } /** * Returns a view of the portion of this list between the specified * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive. (If * {@code fromIndex} and {@code toIndex} are equal, the returned list is * empty.) The returned list is backed by this list, so non-structural * changes in the returned list are reflected in this list, and vice-versa. * The returned list supports all of the optional list operations. * * <p>This method eliminates the need for explicit range operations (of * the sort that commonly exist for arrays). Any operation that expects * a list can be used as a range operation by passing a subList view * instead of a whole list. For example, the following idiom * removes a range of elements from a list: * <pre> * list.subList(from, to).clear(); * </pre> * Similar idioms may be constructed for {@link #indexOf(Object)} and * {@link #lastIndexOf(Object)}, and all of the algorithms in the * {@link Collections} class can be applied to a subList. * * <p>The semantics of the list returned by this method become undefined if * the backing list (i.e., this list) is <i>structurally modified</i> in * any way other than via the returned list. (Structural modifications are * those that change the size of this list, or otherwise perturb it in such * a fashion that iterations in progress may yield incorrect results.) * * @throws IndexOutOfBoundsException {@inheritDoc} * @throws IllegalArgumentException {@inheritDoc} */ public List<E> subList(int fromIndex, int toIndex) { subListRangeCheck(fromIndex, toIndex, size); return new SubList(this, 0, fromIndex, toIndex); } static void subListRangeCheck(int fromIndex, int toIndex, int size) { if (fromIndex < 0) throw new IndexOutOfBoundsException("fromIndex = " + fromIndex); if (toIndex > size) throw new IndexOutOfBoundsException("toIndex = " + toIndex); if (fromIndex > toIndex) throw new IllegalArgumentException("fromIndex(" + fromIndex + ") > toIndex(" + toIndex + ")"); } /** * 子列表类,维护的列表对象还是父类的列表对象,SubList只是维护一个下标区间 */ private class SubList extends AbstractList<E> implements RandomAccess { private final AbstractList<E> parent; private final int parentOffset; private final int offset; int size; SubList(AbstractList<E> parent, int offset, int fromIndex, int toIndex) { this.parent = parent; this.parentOffset = fromIndex; this.offset = offset + fromIndex; this.size = toIndex - fromIndex; this.modCount = ArrayList.this.modCount; } public E set(int index, E e) { rangeCheck(index); checkForComodification(); E oldValue = ArrayList.this.elementData(offset + index); ArrayList.this.elementData[offset + index] = e; return oldValue; } public E get(int index) { rangeCheck(index); checkForComodification(); return ArrayList.this.elementData(offset + index); } public int size() { checkForComodification(); return this.size; } public void add(int index, E e) { rangeCheckForAdd(index); checkForComodification(); parent.add(parentOffset + index, e); this.modCount = parent.modCount; this.size++; } public E remove(int index) { rangeCheck(index); checkForComodification(); E result = parent.remove(parentOffset + index); this.modCount = parent.modCount; this.size--; return result; } protected void removeRange(int fromIndex, int toIndex) { checkForComodification(); parent.removeRange(parentOffset + fromIndex, parentOffset + toIndex); this.modCount = parent.modCount; this.size -= toIndex - fromIndex; } public boolean addAll(Collection<? extends E> c) { return addAll(this.size, c); } public boolean addAll(int index, Collection<? extends E> c) { rangeCheckForAdd(index); int cSize = c.size(); if (cSize==0) return false; checkForComodification(); parent.addAll(parentOffset + index, c); this.modCount = parent.modCount; this.size += cSize; return true; } public Iterator<E> iterator() { return listIterator(); } public ListIterator<E> listIterator(final int index) { checkForComodification(); rangeCheckForAdd(index); final int offset = this.offset; return new ListIterator<E>() { int cursor = index; int lastRet = -1; int expectedModCount = ArrayList.this.modCount; public boolean hasNext() { return cursor != SubList.this.size; } @SuppressWarnings("unchecked") public E next() { checkForComodification(); int i = cursor; if (i >= SubList.this.size) throw new NoSuchElementException(); Object[] elementData = ArrayList.this.elementData; if (offset + i >= elementData.length) throw new ConcurrentModificationException(); cursor = i + 1; return (E) elementData[offset + (lastRet = i)]; } public boolean hasPrevious() { return cursor != 0; } @SuppressWarnings("unchecked") public E previous() { checkForComodification(); int i = cursor - 1; if (i < 0) throw new NoSuchElementException(); Object[] elementData = ArrayList.this.elementData; if (offset + i >= elementData.length) throw new ConcurrentModificationException(); cursor = i; return (E) elementData[offset + (lastRet = i)]; } @SuppressWarnings("unchecked") public void forEachRemaining(Consumer<? super E> consumer) { Objects.requireNonNull(consumer); final int size = SubList.this.size; int i = cursor; if (i >= size) { return; } final Object[] elementData = ArrayList.this.elementData; if (offset + i >= elementData.length) { throw new ConcurrentModificationException(); } while (i != size && modCount == expectedModCount) { consumer.accept((E) elementData[offset + (i++)]); } // update once at end of iteration to reduce heap write traffic lastRet = cursor = i; checkForComodification(); } public int nextIndex() { return cursor; } public int previousIndex() { return cursor - 1; } public void remove() { if (lastRet < 0) throw new IllegalStateException(); checkForComodification(); try { SubList.this.remove(lastRet); cursor = lastRet; lastRet = -1; expectedModCount = ArrayList.this.modCount; } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } public void set(E e) { if (lastRet < 0) throw new IllegalStateException(); checkForComodification(); try { ArrayList.this.set(offset + lastRet, e); } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } public void add(E e) { checkForComodification(); try { int i = cursor; SubList.this.add(i, e); cursor = i + 1; lastRet = -1; expectedModCount = ArrayList.this.modCount; } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } final void checkForComodification() { if (expectedModCount != ArrayList.this.modCount) throw new ConcurrentModificationException(); } }; } public List<E> subList(int fromIndex, int toIndex) { subListRangeCheck(fromIndex, toIndex, size); return new SubList(this, offset, fromIndex, toIndex); } private void rangeCheck(int index) { if (index < 0 || index >= this.size) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } private void rangeCheckForAdd(int index) { if (index < 0 || index > this.size) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } private String outOfBoundsMsg(int index) { return "Index: "+index+", Size: "+this.size; } private void checkForComodification() { if (ArrayList.this.modCount != this.modCount) throw new ConcurrentModificationException(); } public Spliterator<E> spliterator() { checkForComodification(); return new ArrayListSpliterator<E>(ArrayList.this, offset, offset + this.size, this.modCount); } } @Override public void forEach(Consumer<? super E> action) { Objects.requireNonNull(action); final int expectedModCount = modCount; @SuppressWarnings("unchecked") final E[] elementData = (E[]) this.elementData; final int size = this.size; for (int i=0; modCount == expectedModCount && i < size; i++) { action.accept(elementData[i]); } if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } } /** * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em> * and <em>fail-fast</em> {@link Spliterator} over the elements in this * list. * * <p>The {@code Spliterator} reports {@link Spliterator#SIZED}, * {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}. * Overriding implementations should document the reporting of additional * characteristic values. * * @return a {@code Spliterator} over the elements in this list * @since 1.8 */ @Override public Spliterator<E> spliterator() { return new ArrayListSpliterator<>(this, 0, -1, 0); } /** Index-based split-by-two, lazily initialized Spliterator */ static final class ArrayListSpliterator<E> implements Spliterator<E> { /* * If ArrayLists were immutable, or structurally immutable (no * adds, removes, etc), we could implement their spliterators * with Arrays.spliterator. Instead we detect as much * interference during traversal as practical without * sacrificing much performance. We rely primarily on * modCounts. These are not guaranteed to detect concurrency * violations, and are sometimes overly conservative about * within-thread interference, but detect enough problems to * be worthwhile in practice. To carry this out, we (1) lazily * initialize fence and expectedModCount until the latest * point that we need to commit to the state we are checking * against; thus improving precision. (This doesn't apply to * SubLists, that create spliterators with current non-lazy * values). (2) We perform only a single * ConcurrentModificationException check at the end of forEach * (the most performance-sensitive method). When using forEach * (as opposed to iterators), we can normally only detect * interference after actions, not before. Further * CME-triggering checks apply to all other possible * violations of assumptions for example null or too-small * elementData array given its size(), that could only have * occurred due to interference. This allows the inner loop * of forEach to run without any further checks, and * simplifies lambda-resolution. While this does entail a * number of checks, note that in the common case of * list.stream().forEach(a), no checks or other computation * occur anywhere other than inside forEach itself. The other * less-often-used methods cannot take advantage of most of * these streamlinings. */ private final ArrayList<E> list; private int index; // current index, modified on advance/split private int fence; // -1 until used; then one past last index private int expectedModCount; // initialized when fence set /** Create new spliterator covering the given range */ ArrayListSpliterator(ArrayList<E> list, int origin, int fence, int expectedModCount) { this.list = list; // OK if null unless traversed this.index = origin; this.fence = fence; this.expectedModCount = expectedModCount; } private int getFence() { // initialize fence to size on first use int hi; // (a specialized variant appears in method forEach) ArrayList<E> lst; if ((hi = fence) < 0) { if ((lst = list) == null) hi = fence = 0; else { expectedModCount = lst.modCount; hi = fence = lst.size; } } return hi; } public ArrayListSpliterator<E> trySplit() { int hi = getFence(), lo = index, mid = (lo + hi) >>> 1; return (lo >= mid) ? null : // divide range in half unless too small new ArrayListSpliterator<E>(list, lo, index = mid, expectedModCount); } public boolean tryAdvance(Consumer<? super E> action) { if (action == null) throw new NullPointerException(); int hi = getFence(), i = index; if (i < hi) { index = i + 1; @SuppressWarnings("unchecked") E e = (E)list.elementData[i]; action.accept(e); if (list.modCount != expectedModCount) throw new ConcurrentModificationException(); return true; } return false; } public void forEachRemaining(Consumer<? super E> action) { int i, hi, mc; // hoist accesses and checks from loop ArrayList<E> lst; Object[] a; if (action == null) throw new NullPointerException(); if ((lst = list) != null && (a = lst.elementData) != null) { if ((hi = fence) < 0) { mc = lst.modCount; hi = lst.size; } else mc = expectedModCount; if ((i = index) >= 0 && (index = hi) <= a.length) { for (; i < hi; ++i) { @SuppressWarnings("unchecked") E e = (E) a[i]; action.accept(e); } if (lst.modCount == mc) return; } } throw new ConcurrentModificationException(); } public long estimateSize() { return (long) (getFence() - index); } public int characteristics() { return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED; } } @Override public boolean removeIf(Predicate<? super E> filter) { Objects.requireNonNull(filter); // figure out which elements are to be removed // any exception thrown from the filter predicate at this stage // will leave the collection unmodified int removeCount = 0; final BitSet removeSet = new BitSet(size); final int expectedModCount = modCount; final int size = this.size; for (int i=0; modCount == expectedModCount && i < size; i++) { @SuppressWarnings("unchecked") final E element = (E) elementData[i]; if (filter.test(element)) { removeSet.set(i); removeCount++; } } if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } // shift surviving elements left over the spaces left by removed elements final boolean anyToRemove = removeCount > 0; if (anyToRemove) { final int newSize = size - removeCount; for (int i=0, j=0; (i < size) && (j < newSize); i++, j++) { i = removeSet.nextClearBit(i); elementData[j] = elementData[i]; } for (int k=newSize; k < size; k++) { elementData[k] = null; // Let gc do its work } this.size = newSize; if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } modCount++; } return anyToRemove; } @Override @SuppressWarnings("unchecked") public void replaceAll(UnaryOperator<E> operator) { Objects.requireNonNull(operator); final int expectedModCount = modCount; final int size = this.size; for (int i=0; modCount == expectedModCount && i < size; i++) { elementData[i] = operator.apply((E) elementData[i]); } if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } modCount++; } @Override @SuppressWarnings("unchecked") public void sort(Comparator<? super E> c) { final int expectedModCount = modCount; Arrays.sort((E[]) elementData, 0, size, c); if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } modCount++; } }