- 协同过滤推荐算法
禺垣
机器学习笔记算法机器学习推荐算法算法机器学习
协同过滤(CollaborativeFiltering)是推荐系统中最经典的算法之一,其核心思想是“物以类聚,人以群分”,即通过分析用户的历史行为数据,找到与目标用户相似的用户群体或相似的物品,从而为目标用户推荐他们可能感兴趣的物品。一、基于用户的协同过滤(User-BasedCF)核心思想:找到与目标用户兴趣相似的其他用户(“邻居”),将这些邻居喜欢的物品推荐给目标用户。步骤:s1.计算用户
- 遗传算法:原理、实现与应用的全面解析
2后啥样
算法
摘要本文深入探讨遗传算法这一模拟自然进化过程的计算模型,详细阐述其核心原理、关键步骤、实现方式及在多领域的应用。通过分析遗传算法与传统优化算法的差异,结合实际案例展示其在解决复杂优化问题上的优势,并探讨算法的改进策略与未来发展趋势,旨在为相关领域研究和实践提供全面理论支撑与实践指导,助力解决复杂优化难题,推动技术创新与发展。一、引言在现代科学与工程领域,诸多问题可归结为优化问题,如资源分配、路径规
- 遗传算法的原理与实现示例
遗传算法是一种受生物进化理论启发的随机优化算法,其核心思想是模拟自然界中“物竞天择、适者生存”的进化过程,通过对候选解的迭代优化,找到问题的最优解。一、核心思想 遗传算法将优化问题的候选解视为生物群体中的“个体”,每个个体的“基因”对应解的参数。通过模拟生物进化中的选择、交叉、变异等过程,让群体中“适应性强”(即更接近最优解)的个体保留并繁衍,“适应性弱”的个体被淘汰,最终使群体逐渐逼近最优
- Python与Dlib库实现人脸技术实战
西域情歌
本文还有配套的精品资源,点击获取简介:本项目详细说明了如何使用Python结合Dlib库实现人脸检测、识别、数量检测和距离检测。利用Dlib提供的机器学习算法和计算机视觉功能,包括HOG特征检测、级联分类器、面部特征向量模型和关键点预测等,项目能够快速准确地在图像中检测和识别人脸。此外,还介绍了如何统计图像中的人脸数量以及如何计算人脸之间的距离。通过实际代码资源,开发者能够掌握实时人脸技术的应用,
- python 海象运算符_python := 海象运算符
伶邪
python海象运算符
最近在做算法题越来越发现python写法真的挺好用的记下来map(lambdax:sum(x))中lambda代表匿名函数re.findall(r'0+|1+',s)是正则表达式:=海象运算符转if(n:=len(a))>10:print(f"Lististoolong({n}elements,expected10:print(f"Lististolong({len(a)}elements,exp
- python := 海象运算符
challenge-linge
itit
参考视频教程:**体系课-Go+Python双语言混合开发盯紧技术先机抓紧高薪机遇**最近在做算法题越来越发现python写法真的挺好用的记下来map(lambdax:sum(x))中lambda代表匿名函数re.findall(r’0+|1+’,s)是正则表达式:=海象运算符转背景:python3.8正式版最近更新了,其中PEP572中的海象运算符获得正式python版本的支持.我看了官网的文档
- MATLAB基础应用精讲-【人工智能】数据空间(概念篇)
林聪木
算法分类
目录前言算法原理发展历程什么是数据空间数据空间基本规律?数据共存方法Pay-as-you-go的进化方式跨域和异构数据源的需求技术实现服务提供数据空间的特点多元主体的开放参与多元角色的中间服务全面覆盖的认证机制丰富的数据联合利用机制数据空间技术框架国际数据空间组成部分使用控制数据场数据场的作用下,三种典型的数据要素价值释放模式数据空间的发展现状国内发展现状:国外发展现状:数据空间的基础设施数据空间
- 【深度学习】强化学习(Reinforcement Learning, RL)主流架构解析
烟锁池塘柳0
机器学习与深度学习深度学习人工智能机器学习
强化学习(ReinforcementLearning,RL)主流架构解析摘要:本文将带你深入了解强化学习(ReinforcementLearning,RL)的几种核心架构,包括基于价值(Value-Based)、基于策略(Policy-Based)和演员-评论家(Actor-Critic)方法。我们将探讨它们的基本原理、优缺点以及经典算法,帮助你构建一个清晰的RL知识体系。文章目录强化学习(Rei
- HarmonyOS 数据加密深度实践:守护用户隐私的最后一道防线
逻极
笔记harmonyos鸿蒙harmonyos华为鸿蒙arkts数据加密加密算法
在当今数字化时代,数据安全已成为用户关注的核心焦点。鸿蒙系统深刻认识到这一点,为开发者精心打造了全面且强大的加密框架和安全存储机制。本文将深入剖析如何巧妙运用鸿蒙的加密技术,全方位保障敏感数据在存储与传输过程中的安全性,为用户隐私构建起坚固的防护壁垒。一、AES-GCM加密算法的实战应用在众多加密算法中,AES-GCM凭借其卓越的高效性和强大的数据完整性保护能力,成为数据加密的优选方案。初始化向量
- 代码随想录算法训练营第二十一天|回溯算法理论基础,77. 组合
丁希希哇
力扣算法刷题算法面试python力扣数据结构剪枝
系列文章目录代码随想录算法训练营第一天|数组理论基础,704.二分查找,27.移除元素代码随想录算法训练营第二天|977.有序数组的平方,209.长度最小的子数组,59.螺旋矩阵II代码随想录算法训练营第三天|链表理论基础,203.移除链表元素,707.设计链表,206.反转链表代码随想录算法训练营第四天|24.两两交换链表中的节点,19.删除链表的倒数第N个节点,面试题02.07.链表相交,14
- 返利佣金最高软件的技术壁垒:基于强化学习的动态佣金算法架构揭秘
返利佣金最高软件的技术壁垒:基于强化学习的动态佣金算法架构揭秘大家好,我是阿可,微赚淘客系统及省赚客APP创始人,是个冬天不穿秋裤,天冷也要风度的程序猿!一、背景介绍在返利佣金软件中,动态佣金算法是提升用户活跃度和平台收益的关键技术。传统的佣金算法通常是静态的,无法根据用户的实时行为和市场动态进行调整。为了突破这一技术瓶颈,我们引入了强化学习(ReinforcementLearning,RL),通
- 算法第17天|继续二叉树:二叉搜索树的最近公共祖先、二叉搜索树中的插入操作、删除二叉搜索树中的节点
孟大本事要学习
算法学习算法
今日总结1、删除二叉搜索树中的节点(需要着重复习)当一个二叉树题目中用到返回值时,一定要清楚返回值是什么?返回的东西是赋值给什么变量的,什么时候添加返回值,什么时候接收返回值。2、遇到二叉搜索树要思考的问题:当遇到二叉搜索树,需要明白递归的方式是从上到下,可以根据值的大小找到对应的递归路径(属于递归三部曲中的确定单层递归逻辑)3、二叉搜索树中的插入操作要理解二叉搜索树的插入操作其实是找到合适的一个
- 算法第16天|继续二叉树:二叉搜索树的最小绝对差、二叉搜索树中的众数、二叉树的最近公共祖先
孟大本事要学习
算法学习算法数据结构
今日总结:1、遇到二叉搜索树就要想到中序遍历是一个有序数组。2、递归的时候如果递归有返回值,一定要思考截止条件返回什么3、最近公共祖先问题:如果当前节点是要寻找的某个节点,可以直接返回:如果二叉树右边没有另一个节点,本身就是最近公共祖先;如果有另一个节点,再往下递归也找不到另一个节点。二叉搜索树的最小绝对差:题目链接:530.二叉搜索树的最小绝对差-力扣(LeetCode)整体思路:1、看到二叉搜
- 【回溯算法】|代码随想录算法训练营第19天|77. 组合、216.组合总和III、17.电话号码的字母组合
小白糖的狗狗叫鸡蛋
15-数据结构与算法算法redis数据库
刷题神器代码随想录往期回顾>【二叉树】|代码随想录算法训练营第18天|669.修剪二叉搜索树、108.将有序数组转换为二叉搜索树、538.把二叉搜索树转换为累加树、【总结】题目理论基础文章:文章讲解视频:视频讲解回溯算法并不是一个高效算法,它的目的是穷举,替代多层for循环,回溯算法和递归算法相关纠缠,在递归的前后要进行回溯,回溯算法可以理解为树型结构,树的宽度就是for循环的范围,树的深度就是递
- 【算法刷题记录001】整型数组合并(java代码实现)
一、题目描述对于给定的由n个整数组成的数组{a1,a2,…,an}和m个整数组成的数组{b1,b2,…,bm},将它们合并后从小到大排序,并输出去重后的结果。二、输入描述第一行输入一个整数n(1≤n≤150)代表数组a中元素个数。第二行输入n个整数a1,a2,…,an(-1≤ai≤105)代表数组a中的元素。第三行输入一个整数m(1≤m≤150)代表数组b中元素个数。第四行输入m个整数b1,b2,
- Orange3机器学习建模和可视化分析数据预处理、特征工程、算法训练
维度软件库
测试工具开源软件电脑
各位数据挖掘爱好者们!今天给你们介绍一款超厉害的开源软件——Orange3。它就像一个神奇的工具箱,你只要通过拖放组件就能完成机器学习建模和可视化分析,软件下载地址安装包它支持数据预处理、特征工程、算法训练和评估整个流程,就像一个贴心的管家,把数据挖掘的事儿全给你安排得明明白白!它还内置了箱线图、决策树这些可视化工具,能直观地把数据分布和模型结构展示出来,就像给你开了个透视眼,让数据一目了然!这软
- 推荐算法化身 “购物读心术”!ZKmall开源商城如何让用户消费激增 30%?
zkmall
ZMkallB2C商城B2B2C商城推荐算法算法机器学习
在电商竞争白热化的当下,如何精准把握用户需求、提升消费转化,成为企业突围的关键。ZKmall开源商城以推荐算法为核心驱动力,通过深度数据挖掘与智能策略优化,实现用户平均消费金额提升30%,复购率增长25%。这套被称为“购物读心术”的技术,究竟如何颠覆传统电商的人货匹配模式?一、传统推荐的痛点:“猜不准”导致用户流失传统电商平台的推荐功能往往依赖简单的“热销商品”“同类推荐”逻辑,无法满足用户个性化
- LLM面试题14
三月七꧁ ꧂
破题·大模型面试语言模型人工智能数据库自然语言处理prompt
算法岗面试题介绍下Transformer模型。 Transformer本身是一个典型的encoder-decoder模型,Encoder端和Decoder端均有6个Block,Encoder端的Block包括两个模块,多头self-attention模块以及一个前馈神经网络模块;Decoder端的Block包括三个模块,Masked多头self-attention模块,多头Encoder-D
- KNN(K-近邻算法)(上)--day05
扫把星133
机器学习python人工智能近邻算法算法
KNN(K-NearestNeighbors,K近邻算法)是一种用于分类和回归的非参数化方法。其基本思想是通过找出与新样本最接近的已标记数据中的K个最近邻居来进行预测或分类。注释:非参数化方法是指在统计学和机器学习中,不对数据分布做出严格假设(这些假设通常包括
- LL面试题11
三月七꧁ ꧂
破题·大模型面试语言模型gpt人工智能自然语言处理promptllama
物流算法实习面试题7道GLM是什么? GLM(GeneralizedLinearModel)是一种六义线性模型,用于建立变量之间的关系。它将线性回归模型推广到更广泛的数据分布,可以处理非正态分布的响应变量,如二项分布(逻辑回归)、泊松分布和伽玛分布等。GLM结合线性模型和非线性函数,通过最大似然估计或广义最小二乘估计来拟合模型参数。SVM的原理?怎么找到最优的线性分类器?支持向量是什么?
- 7.4_面试_JAVA_
灰太狼Coding
面试职场和发展
所谓的学习,就是学了一个高耦合,低内聚。操作系统:进程调度算法有哪些??1先来服务算法:从队列中拿出最先入队的一个,一直运行,直到退出。才会再从队列中选择最先到的一个。适用于CPU繁忙型,不适用于IO繁忙型2、短服务优先。优先执行作业时间短的任务。提高系统吞吐量。缺点是会把长任务排到很往后。3、响应比算法:(用响应时间+等待时间)/等待时间,算出来,数字大的先执行。4、时间片轮转:设定一个固定时间
- gesp c++ 八级知识点
山中习静观潮槿
Gespc++考级知识点c++代理模式开发语言
以下是根据GESPC++八级考试大纲的超详细知识点解析与代码实现,涵盖计数原理、排列组合、图论算法、倍增法等核心内容,每个知识点均包含概念说明、应用场景、使用方法、优缺点及完整代码示例。一、计数原理1.1加法原理与乘法原理概念:加法原理:完成一件事有多个互斥方案,总方法数为各方案方法数之和。乘法原理:完成一件事需多个独立步骤,总方法数为各步骤方法数的乘积。应用场景:加法原理:选择不同类别的路径或物
- gesp c++ 七级知识点
以下是根据GESPC++七级考试大纲的超详细知识点解析与代码实现,涵盖数学函数、复杂动态规划、图论算法、哈希表等核心内容,每个知识点均包含概念说明、应用场景、使用方法、优缺点及完整代码示例。一、数学库函数1.1三角函数概念:sin(x)、cos(x)、tan(x)分别计算弧度为x的正弦、余弦、正切值。应用场景:几何计算、物理运动模拟、图形学。代码示例:#include#includeusingna
- 【GESP】C++四级考试大纲知识点梳理, (6) 递推算法
CoderCodingNo
c++算法开发语言
GESPC++四级官方考试大纲中,共有11条考点,本文针对第6条考点进行分析介绍。(6)掌握递推算法基本思想、递推关系式的推导以及递推问题求解。四级其他考点回顾:【GESP】C++四级考试大纲知识点梳理,(1)指针【GESP】C++四级考试大纲知识点梳理,(2)结构体和二维数组【GESP】C++四级考试大纲知识点梳理,(3)模块化和函数【GESP】C++四级考试大纲知识点梳理,(4)变量和作用域【
- 坚石ET ARM加密狗复制模拟介绍
加密狗复制模拟
个人开发软件工程安全
ETARM加密狗是一种基于ARM处理器架构的硬件加密设备,主要用于软件保护、版权控制及授权管理。其核心原理是通过硬件芯片存储密钥或执行特定算法,与软件进行交互验证。复制此类加密狗涉及硬件逆向、固件提取及模拟技术。硬件分析与固件提取拆解物理加密狗获取芯片型号及电路设计是第一步。常见工具包括逻辑分析仪、示波器和编程器。通过编程器读取ARM芯片的Flash或EEPROM存储内容,获取固件二进制文件。部分
- 蚁群算法原理与应用详解
本文还有配套的精品资源,点击获取简介:蚁群算法是一种基于蚂蚁寻找食物路径行为的优化算法,它能够有效解决包括旅行商问题、网络路由和多目标优化在内的复杂问题。该算法模拟蚂蚁释放信息素来找到最短路径的过程,通过模拟蚂蚁的行为,算法逐步优化选择路径。蚁群算法具有并行性和全局优化能力,但也面临早熟收敛和参数调整的挑战。它已成功应用于物流优化、通信网络、任务调度、机器学习、图像处理和生物医学等众多领域。1.蚁
- 蚁群算法及蚂蚁系统的原理(js实现版)
de_fault_
js算法算法javascript图论启发式算法
蚁群算法及蚂蚁系统的原理(js实现版)蚁群算法旅行商问题蚁群系统代码实现蚁群算法蚁群算法是著名的启发式算法,常用于解决最短路径问题蚁群算法的来源蚁群算法来源于对蚂蚁寻找食物行为的观察,蚂蚁个体并不存在太高的智慧,但蚁群整体却可以通过信息素来找到通往食物的最短路径蚁群算法的原理假设从a点到b点存在2条路径,而第一条路径l短,第二条路径m长。刚开始时走l和m是随机的,但是由于l更短,所以重复频率也就更
- MATLAB蚁群算法完整教程与代码实现
Emmamkq~~
本文还有配套的精品资源,点击获取简介:蚁群算法是一种模拟蚂蚁寻找食物路径行为的全局优化方法,具有强大的数值优化能力。本资源详细介绍了在MATLAB中实现蚁群算法的关键步骤,包括初始化、规则迭代、信息素更新和停止条件等,并通过实例代码展示了算法的实用应用。这为工程师和科研人员提供了一个学习和应用蚁群算法的平台,特别是在解决旅行商问题、网络路由、生产调度等优化问题方面。1.蚁群算法简介蚁群算法,灵感来
- 基于Java的蚁群算法深度解析与完整实现
一枚码农404
算法java算法蚁群算法强化学习优化算法java算法
基于Java的蚁群算法深度解析与完整实现本文深入剖析蚁群算法(ACO)的核心原理与实现细节,结合旅行商问题(TSP)场景,提供完整的Java代码实现及工程级优化方案。文章从蚂蚁觅食行为的信息素机制出发,详解路径选择概率模型、动态信息素更新策略及参数调优方法。通过面向对象设计构建蚁群算法核心类库,实现包括路径构建、轮盘赌选择、局部/全局信息素更新等关键算法模块,并给出参数动态调整、精英策略、并行化计
- Python实现蚁群算法
闲人编程
pythonpython算法开发语言蚁群
目录蚁群算法的基本原理蚁群算法的步骤Python实现蚁群算法解决TSP问题解释举例说明蚁群算法(AntColonyOptimization,ACO)是一种基于自然界蚂蚁觅食行为的仿生算法,最早由MarcoDorigo在1992年提出。它是一种用于解决组合优化问题的概率算法,特别适用于解决旅行商问题(TSP)、路径规划等问题。蚁群算法的基本原理蚂蚁在寻找食物的过程中会在路径上留下信息素(pherom
- [星球大战]阿纳金的背叛
comsci
本来杰迪圣殿的长老是不同意让阿纳金接受训练的.........
但是由于政治原因,长老会妥协了...这给邪恶的力量带来了机会
所以......现代的地球联邦接受了这个教训...绝对不让某些年轻人进入学院
- 看懂它,你就可以任性的玩耍了!
aijuans
JavaScript
javascript作为前端开发的标配技能,如果不掌握好它的三大特点:1.原型 2.作用域 3. 闭包 ,又怎么可以说你学好了这门语言呢?如果标配的技能都没有撑握好,怎么可以任性的玩耍呢?怎么验证自己学好了以上三个基本点呢,我找到一段不错的代码,稍加改动,如果能够读懂它,那么你就可以任性了。
function jClass(b
- Java常用工具包 Jodd
Kai_Ge
javajodd
Jodd 是一个开源的 Java 工具集, 包含一些实用的工具类和小型框架。简单,却很强大! 写道 Jodd = Tools + IoC + MVC + DB + AOP + TX + JSON + HTML < 1.5 Mb
Jodd 被分成众多模块,按需选择,其中
工具类模块有:
jodd-core &nb
- SpringMvc下载
120153216
springMVC
@RequestMapping(value = WebUrlConstant.DOWNLOAD)
public void download(HttpServletRequest request,HttpServletResponse response,String fileName) {
OutputStream os = null;
InputStream is = null;
- Python 标准异常总结
2002wmj
python
Python标准异常总结
AssertionError 断言语句(assert)失败 AttributeError 尝试访问未知的对象属性 EOFError 用户输入文件末尾标志EOF(Ctrl+d) FloatingPointError 浮点计算错误 GeneratorExit generator.close()方法被调用的时候 ImportError 导入模块失
- SQL函数返回临时表结构的数据用于查询
357029540
SQL Server
这两天在做一个查询的SQL,这个SQL的一个条件是通过游标实现另外两张表查询出一个多条数据,这些数据都是INT类型,然后用IN条件进行查询,并且查询这两张表需要通过外部传入参数才能查询出所需数据,于是想到了用SQL函数返回值,并且也这样做了,由于是返回多条数据,所以把查询出来的INT类型值都拼接为了字符串,这时就遇到问题了,在查询SQL中因为条件是INT值,SQL函数的CAST和CONVERST都
- java 时间格式化 | 比较大小| 时区 个人笔记
7454103
javaeclipsetomcatcMyEclipse
个人总结! 不当之处多多包含!
引用 1.0 如何设置 tomcat 的时区:
位置:(catalina.bat---JAVA_OPTS 下面加上)
set JAVA_OPT
- 时间获取Clander的用法
adminjun
Clander时间
/**
* 得到几天前的时间
* @param d
* @param day
* @return
*/
public static Date getDateBefore(Date d,int day){
Calend
- JVM初探与设置
aijuans
java
JVM是Java Virtual Machine(Java虚拟机)的缩写,JVM是一种用于计算设备的规范,它是一个虚构出来的计算机,是通过在实际的计算机上仿真模拟各种计算机功能来实现的。Java虚拟机包括一套字节码指令集、一组寄存器、一个栈、一个垃圾回收堆和一个存储方法域。 JVM屏蔽了与具体操作系统平台相关的信息,使Java程序只需生成在Java虚拟机上运行的目标代码(字节码),就可以在多种平台
- SQL中ON和WHERE的区别
avords
SQL中ON和WHERE的区别
数据库在通过连接两张或多张表来返回记录时,都会生成一张中间的临时表,然后再将这张临时表返回给用户。 www.2cto.com 在使用left jion时,on和where条件的区别如下: 1、 on条件是在生成临时表时使用的条件,它不管on中的条件是否为真,都会返回左边表中的记录。
- 说说自信
houxinyou
工作生活
自信的来源分为两种,一种是源于实力,一种源于头脑.实力是一个综合的评定,有自身的能力,能利用的资源等.比如我想去月亮上,要身体素质过硬,还要有飞船等等一系列的东西.这些都属于实力的一部分.而头脑不同,只要你头脑够简单就可以了!同样要上月亮上,你想,我一跳,1米,我多跳几下,跳个几年,应该就到了!什么?你说我会往下掉?你笨呀你!找个东西踩一下不就行了吗?
无论工作还
- WEBLOGIC事务超时设置
bijian1013
weblogicjta事务超时
系统中统计数据,由于调用统计过程,执行时间超过了weblogic设置的时间,提示如下错误:
统计数据出错!
原因:The transaction is no longer active - status: 'Rolling Back. [Reason=weblogic.transaction.internal
- 两年已过去,再看该如何快速融入新团队
bingyingao
java互联网融入架构新团队
偶得的空闲,翻到了两年前的帖子
该如何快速融入一个新团队,有所感触,就记下来,为下一个两年后的今天做参考。
时隔两年半之后的今天,再来看当初的这个博客,别有一番滋味。而我已经于今年三月份离开了当初所在的团队,加入另外的一个项目组,2011年的这篇博客之后的时光,我很好的融入了那个团队,而直到现在和同事们关系都特别好。大家在短短一年半的时间离一起经历了一
- 【Spark七十七】Spark分析Nginx和Apache的access.log
bit1129
apache
Spark分析Nginx和Apache的access.log,第一个问题是要对Nginx和Apache的access.log文件进行按行解析,按行解析就的方法是正则表达式:
Nginx的access.log解析正则表达式
val PATTERN = """([^ ]*) ([^ ]*) ([^ ]*) (\\[.*\\]) (\&q
- Erlang patch
bookjovi
erlang
Totally five patchs committed to erlang otp, just small patchs.
IMO, erlang really is a interesting programming language, I really like its concurrency feature.
but the functional programming style
- log4j日志路径中加入日期
bro_feng
javalog4j
要用log4j使用记录日志,日志路径有每日的日期,文件大小5M新增文件。
实现方式
log4j:
<appender name="serviceLog"
class="org.apache.log4j.RollingFileAppender">
<param name="Encoding" v
- 读《研磨设计模式》-代码笔记-桥接模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 个人觉得关于桥接模式的例子,蜡笔和毛笔这个例子是最贴切的:http://www.cnblogs.com/zhenyulu/articles/67016.html
* 笔和颜色是可分离的,蜡笔把两者耦合在一起了:一支蜡笔只有一种
- windows7下SVN和Eclipse插件安装
chenyu19891124
eclipse插件
今天花了一天时间弄SVN和Eclipse插件的安装,今天弄好了。svn插件和Eclipse整合有两种方式,一种是直接下载插件包,二种是通过Eclipse在线更新。由于之前Eclipse版本和svn插件版本有差别,始终是没装上。最后在网上找到了适合的版本。所用的环境系统:windows7JDK:1.7svn插件包版本:1.8.16Eclipse:3.7.2工具下载地址:Eclipse下在地址:htt
- [转帖]工作流引擎设计思路
comsci
设计模式工作应用服务器workflow企业应用
作为国内的同行,我非常希望在流程设计方面和大家交流,刚发现篇好文(那么好的文章,现在才发现,可惜),关于流程设计的一些原理,个人觉得本文站得高,看得远,比俺的文章有深度,转载如下
=================================================================================
自开博以来不断有朋友来探讨工作流引擎该如何
- Linux 查看内存,CPU及硬盘大小的方法
daizj
linuxcpu内存硬盘大小
一、查看CPU信息的命令
[root@R4 ~]# cat /proc/cpuinfo |grep "model name" && cat /proc/cpuinfo |grep "physical id"
model name : Intel(R) Xeon(R) CPU X5450 @ 3.00GHz
model name :
- linux 踢出在线用户
dongwei_6688
linux
两个步骤:
1.用w命令找到要踢出的用户,比如下面:
[root@localhost ~]# w
18:16:55 up 39 days, 8:27, 3 users, load average: 0.03, 0.03, 0.00
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
- 放手吧,就像不曾拥有过一样
dcj3sjt126com
内容提要:
静悠悠编著的《放手吧就像不曾拥有过一样》集结“全球华语世界最舒缓心灵”的精华故事,触碰生命最深层次的感动,献给全世界亿万读者。《放手吧就像不曾拥有过一样》的作者衷心地祝愿每一位读者都给自己一个重新出发的理由,将那些令你痛苦的、扛起的、背负的,一并都放下吧!把憔悴的面容换做一种清淡的微笑,把沉重的步伐调节成春天五线谱上的音符,让自己踏着轻快的节奏,在人生的海面上悠然漂荡,享受宁静与
- php二进制安全的含义
dcj3sjt126com
PHP
PHP里,有string的概念。
string里,每个字符的大小为byte(与PHP相比,Java的每个字符为Character,是UTF8字符,C语言的每个字符可以在编译时选择)。
byte里,有ASCII代码的字符,例如ABC,123,abc,也有一些特殊字符,例如回车,退格之类的。
特殊字符很多是不能显示的。或者说,他们的显示方式没有标准,例如编码65到哪儿都是字母A,编码97到哪儿都是字符
- Linux下禁用T440s,X240的一体化触摸板(touchpad)
gashero
linuxThinkPad触摸板
自打1月买了Thinkpad T440s就一直很火大,其中最让人恼火的莫过于触摸板。
Thinkpad的经典就包括用了小红点(TrackPoint)。但是小红点只能定位,还是需要鼠标的左右键的。但是自打T440s等开始启用了一体化触摸板,不再有实体的按键了。问题是要是好用也行。
实际使用中,触摸板一堆问题,比如定位有抖动,以及按键时会有飘逸。这就导致了单击经常就
- graph_dfs
hcx2013
Graph
package edu.xidian.graph;
class MyStack {
private final int SIZE = 20;
private int[] st;
private int top;
public MyStack() {
st = new int[SIZE];
top = -1;
}
public void push(i
- Spring4.1新特性——Spring核心部分及其他
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- 配置HiveServer2的安全策略之自定义用户名密码验证
liyonghui160com
具体从网上看
http://doc.mapr.com/display/MapR/Using+HiveServer2#UsingHiveServer2-ConfiguringCustomAuthentication
LDAP Authentication using OpenLDAP
Setting
- 一位30多的程序员生涯经验总结
pda158
编程工作生活咨询
1.客户在接触到产品之后,才会真正明白自己的需求。
这是我在我的第一份工作上面学来的。只有当我们给客户展示产品的时候,他们才会意识到哪些是必须的。给出一个功能性原型设计远远比一张长长的文字表格要好。 2.只要有充足的时间,所有安全防御系统都将失败。
安全防御现如今是全世界都在关注的大课题、大挑战。我们必须时时刻刻积极完善它,因为黑客只要有一次成功,就可以彻底打败你。 3.
- 分布式web服务架构的演变
自由的奴隶
linuxWeb应用服务器互联网
最开始,由于某些想法,于是在互联网上搭建了一个网站,这个时候甚至有可能主机都是租借的,但由于这篇文章我们只关注架构的演变历程,因此就假设这个时候已经是托管了一台主机,并且有一定的带宽了,这个时候由于网站具备了一定的特色,吸引了部分人访问,逐渐你发现系统的压力越来越高,响应速度越来越慢,而这个时候比较明显的是数据库和应用互相影响,应用出问题了,数据库也很容易出现问题,而数据库出问题的时候,应用也容易
- 初探Druid连接池之二——慢SQL日志记录
xingsan_zhang
日志连接池druid慢SQL
由于工作原因,这里先不说连接数据库部分的配置,后面会补上,直接进入慢SQL日志记录。
1.applicationContext.xml中增加如下配置:
<bean abstract="true" id="mysql_database" class="com.alibaba.druid.pool.DruidDataSourc