ICA(1)

前提背景:
几天前,一位和蔼可亲的老师给了我一份ICA资料,事情是这样的……
当时正纠结于信号去噪的问题,导师让我写一篇与此相关的论文,我没按时完成任务,这不,一直在纠结呢,然后最近在翻译一些书,然后一次偶然的机会,我就向一位老师问起这个问题了:小波变换用于去噪有一个常规思路就是,
信号->小波变换->挑选系数
挑选系数:区分哪些是信号,哪些是噪声,用信号小波分解系数来重构,从而达到去噪的目的。
然后经过讨论,老师提到到ICA。我如发现宝藏一般,两眼放光。然后估计老师看我求知若渴,就直接给我一份资料。
主要内容:
ICA主要是针对几个问题提出来的,这几个问题中最让我难忘的就是鸡尾酒会问题,其实归根结底是盲源分离。
ICA最根本的思想就是把一个混合物,看成是一个个纯净物组合而成,但注意,这里不是化合物不发生化学反应哈……
然后揭示了一个纯净物组合成混合物的方法,

Y=AX;yi=Aixi
,这个表示有没有觉得很熟悉?对的!和稀疏表示好相似!
然后开始推倒这个A的求法,用的是最大似然的思想。由于高斯分布的信号是不能用ICA方法进行分离,而日常生活中所碰到的大部分信号都有自己稳定的信号分布规则,不般不呈现高斯分布。
理由:若为高斯分布,令 R是正交阵 。如果将 A替换成 A’。y分布没变,因此 x仍然是均值为 0,协方差
E(x(x))=E(AyyT(A)T)=E(ARyyT(AR)T)=AAT

因此,不管混合矩阵是 A还是 A’,x的分布情况是一样, 那么就无法确定混合矩阵也
所以可以通过这一点来判别信号,然后延伸到了衡量信号是否为高斯分布的问题上,有这样一些判别方法,峭度系数(正态分布的峭度为3),还有最大熵(正态分布具有最大熵)。
kurtosis:
kurt(y)=E(y4)3(E(y2))2

负熵:
J(y)=H(ygauss)p(x)logp(x)

然后假设信号服从sigmod分布
g(s)=11+es
推导了一些公式,
1)从p(y)推导p(x);
Fx(x)=P(Xx)=P(Ayx)=P(yWx)=Fy(Wx)p(x)=Fx(x)=Fy(Wx)=|W|P(y)=|W|i=1TP(yi)

2)由p(x)代入负熵的公式得似然函数;
l(w)=i=1m(j=1nlog(wTjxi)+log|w|)

3)似然函数求导得目标函数;
12g(WT1X(i))12g(WT2X(i))12g(WTnX(i))+(WT)1

最后最大化目标函数,这就是最大似然函数方法的基本思路,但到了这里,我遇到一个问题,就是迭代,原文公式如下;
W=W+α12g(WT1X(i))12g(WT2X(i))12g(WTnX(i))+(WT)1

解释是后面的w是上次的结果,前面的w是更新后的结果。w需要赋初值。稍微有点糊涂。因为一般情况难道不是,用EM算法对上面的目标函数最大化么?然后这个迭代的过程放到这里,我反而有点晕了,后来给自己的解释是,这个式子相当于告诉我们如何获取最优值,就好像说,是类似于EM的核心。
最后感谢z老师,感谢您给的资料~
学习的过程中,我再次感到数学知识的不足,遇到了一个矩阵求导,不明不白,越看越晕。这个局面我要在未来一年内打破!
shsf!

你可能感兴趣的:(信号处理)