输入的数据:
[root@i-love-you hadoop]# bin/hdfs dfs -text /input/hehe hadoop hello hadoop me hadoop java
代码:
package inputformat; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.input.NLineInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat; import org.apache.hadoop.mapreduce.lib.partition.HashPartitioner; public class NLineInputFormatTest { public static class MyMapper extends Mapper<LongWritable, Text, Text, LongWritable> { final Text k2 = new Text(); final LongWritable v2 = new LongWritable(); protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, LongWritable>.Context context) throws InterruptedException, IOException { final String line = value.toString(); final String[] splited = line.split("\\s"); for (String word : splited) { k2.set(word); v2.set(1); context.write(k2, v2); } } } public static class MyReducer extends Reducer<Text, LongWritable, Text, LongWritable> { LongWritable v3 = new LongWritable(); protected void reduce(Text k2, Iterable<LongWritable> v2s, Reducer<Text, LongWritable, Text, LongWritable>.Context context) throws IOException, InterruptedException { long count = 0L; for (LongWritable v2 : v2s) { count += v2.get(); } v3.set(count); context.write(k2, v3); } } public static void main(String[] args) throws Exception { final Configuration conf = new Configuration(); final Job job = Job.getInstance(conf, NLineInputFormatTest.class.getSimpleName()); // 1.1 FileInputFormat.setInputPaths(job, "hdfs://192.168.1.10:9000/input/hehe"); //这里改了一下,把TextInputFormat改成了NLineInputFormat NLineInputFormat.setNumLinesPerSplit(job, Integer.parseInt("2")); //NLineInputFormat.setNumLinesPerSplit(job, Integer.parseInt(args[0])); job.setInputFormatClass(NLineInputFormat.class); // 1.2 job.setMapperClass(MyMapper.class); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(LongWritable.class); // 1.3 默认只有一个分区 job.setPartitionerClass(HashPartitioner.class); job.setNumReduceTasks(1); // 1.4省略不写 // 1.5省略不写 // 2.2 job.setReducerClass(MyReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(LongWritable.class); // 2.3 FileOutputFormat.setOutputPath(job, new Path( "hdfs://192.168.1.10:9000/out1")); job.setOutputFormatClass(TextOutputFormat.class); // 执行打成jar包的程序时,必须调用下面的方法 job.setJarByClass(NLineInputFormatTest.class); job.waitForCompletion(true); } }
结果:
[root@i-love-you hadoop]# bin/hadoop jar data/nline.jar 15/04/16 15:04:48 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032 15/04/16 15:04:50 WARN mapreduce.JobSubmitter: Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this. 15/04/16 15:04:51 INFO input.FileInputFormat: Total input paths to process : 1 15/04/16 15:04:52 INFO mapreduce.JobSubmitter: number of splits:2 15/04/16 15:04:53 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1429167587909_0001 15/04/16 15:04:54 INFO impl.YarnClientImpl: Submitted application application_1429167587909_0001 15/04/16 15:04:54 INFO mapreduce.Job: The url to track the job: http://i-love-you:8088/proxy/application_1429167587909_0001/ 15/04/16 15:04:54 INFO mapreduce.Job: Running job: job_1429167587909_0001 15/04/16 15:05:38 INFO mapreduce.Job: Job job_1429167587909_0001 running in uber mode : false 15/04/16 15:05:38 INFO mapreduce.Job: map 0% reduce 0% 15/04/16 15:08:31 INFO mapreduce.Job: map 100% reduce 0% 15/04/16 15:10:03 INFO mapreduce.Job: map 100% reduce 100% 15/04/16 15:10:07 INFO mapreduce.Job: Job job_1429167587909_0001 completed successfully 15/04/16 15:10:08 INFO mapreduce.Job: Counters: 49 File System Counters FILE: Number of bytes read=101 FILE: Number of bytes written=318117 FILE: Number of read operations=0 FILE: Number of large read operations=0 FILE: Number of write operations=0 HDFS: Number of bytes read=248 HDFS: Number of bytes written=29 HDFS: Number of read operations=9 HDFS: Number of large read operations=0 HDFS: Number of write operations=2 Job Counters Launched map tasks=2 Launched reduce tasks=1 Other local map tasks=2 Total time spent by all maps in occupied slots (ms)=356494 Total time spent by all reduces in occupied slots (ms)=63006 Total time spent by all map tasks (ms)=356494 Total time spent by all reduce tasks (ms)=63006 Total vcore-seconds taken by all map tasks=356494 Total vcore-seconds taken by all reduce tasks=63006 Total megabyte-seconds taken by all map tasks=365049856 Total megabyte-seconds taken by all reduce tasks=64518144 Map-Reduce Framework Map input records=3 Map output records=6 Map output bytes=83 Map output materialized bytes=107 Input split bytes=200 Combine input records=0 Combine output records=0 Reduce input groups=4 Reduce shuffle bytes=107 Reduce input records=6 Reduce output records=4 Spilled Records=12 Shuffled Maps =2 Failed Shuffles=0 Merged Map outputs=2 GC time elapsed (ms)=16068 CPU time spent (ms)=7560 Physical memory (bytes) snapshot=356200448 Virtual memory (bytes) snapshot=2527195136 Total committed heap usage (bytes)=257171456 Shuffle Errors BAD_ID=0 CONNECTION=0 IO_ERROR=0 WRONG_LENGTH=0 WRONG_MAP=0 WRONG_REDUCE=0 File Input Format Counters Bytes Read=48 File Output Format Counters Bytes Written=29
解析:
我设置每2行为一个InputSplit:
NLineInputFormat.setNumLinesPerSplit(job, Integer.parseInt("2"));
在输出中可以看到splits的个数:
15/04/16 15:04:52 INFO mapreduce.JobSubmitter: number of splits:2