Given a prime P, 2 <= P < 231, an integer B, 2 <= B < P, and an integer N, 2 <= N < P, compute the discrete logarithm of N, base B, modulo P. That is, find an integer L such that
BL == N (mod P)
Given a prime P, 2 <= P < 231, an integer B, 2 <= B < P, and an integer N, 2 <= N < P, compute the discrete logarithm of N, base B, modulo P. That is, find an integer L such that
BL == N (mod P)
Read several lines of input, each containing P,B,N separated by a space,
for each line print the logarithm on a separate line. If there are several, print the smallest; if there is none, print "no solution".
The solution to this problem requires a well known result in number theory that is probably expected of you for Putnam but not ACM competitions. It is Fermat's theorem that states
B(P-1) == 1 (mod P)
for any prime P and some other (fairly rare) numbers known as base-B pseudoprimes. A rarer subset of the base-B pseudoprimes, known as Carmichael numbers, are pseudoprimes for every base between 2 and P-1. A corollary to Fermat's theorem is that for any m
B(-m) == B(P-1-m) (mod P) .
BSGS算法模板题。
BSGS算法就是求满足a^x=b (mod c) (0<=x<c)的x的算法。【这里c为素数】
做法很简单:
设m=ceil(sqrt(c)) x=i*m+j 那么a^x=(a^m)^i*a^j
枚举i,可以在O(1)时间得出j。
如何在O(1)时间求出j?
设d=(a^m)^i 那么d*a^j=b (mod c),求出d的乘法逆元,那么就可以求出a^j%c。
可以先把a^j用hash表预处理出来,然后O(1)就可以求出j。
整个算法的时间复杂度O(sqrt(c))
#include <iostream> #include <cstring> #include <cstdio> #include <algorithm> #include <cstdlib> #include <cmath> #include <map> #define LL long long using namespace std; map<LL,LL> mp; LL pow(LL a,LL x,LL p) { LL base=a,ans=1; while (x) { if (x&1LL) ans=(ans*base)%p; base=(base*base)%p; x>>=1LL; } return ans; } int main() { LL p,a,b; while (scanf("%lld%lld%lld",&p,&a,&b)!=EOF) { mp.clear(); a%=p; if (!a) { if (!b) puts("1"); else puts("no solution"); continue; } LL m=(LL)ceil(sqrt(p)); LL now=1; for (int i=1;i<=m;i++) { now=(LL)(now*a)%p; if (!mp[now]) mp[now]=i; } LL ni=pow(a,p-m-1,p); bool f=false; mp[1]=0; for (int i=0;i<m;i++) { if (mp.count(b)) { printf("%lld\n",i*m+mp[b]); f=true; break; } b=(b*ni)%p; } if (!f) puts("no solution"); } return 0; }