接下来分析Raw特征和Histogram特征。
Raw特征:将图像缩放到16*16的像素空间内,各个像素值灰度化后为(0,1),结合高斯核函数,然后得到16*16=256维特征向量。
实现源码如下:
/* * Struck: Structured Output Tracking with Kernels * * Code to accompany the paper: * Struck: Structured Output Tracking with Kernels * Sam Hare, Amir Saffari, Philip H. S. Torr * International Conference on Computer Vision (ICCV), 2011 * * Copyright (C) 2011 Sam Hare, Oxford Brookes University, Oxford, UK * * This file is part of Struck. * * Struck is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Struck is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Struck. If not, see <http://www.gnu.org/licenses/>. * */ #include "RawFeatures.h" #include "Config.h" #include "Sample.h" #include "Rect.h" #include <iostream> using namespace Eigen; using namespace cv; static const int kPatchSize = 16; RawFeatures::RawFeatures(const Config& conf) : m_patchImage(kPatchSize, kPatchSize, CV_8UC1) { SetCount(kPatchSize*kPatchSize);//设置维数大小 } void RawFeatures::UpdateFeatureVector(const Sample& s) { IntRect rect = s.GetROI(); // note this truncates to integers cv::Rect roi(rect.XMin(), rect.YMin(), rect.Width(), rect.Height()); cv::resize(s.GetImage().GetImage(0)(roi), m_patchImage, m_patchImage.size()); //equalizeHist(m_patchImage, m_patchImage); int ind = 0; for (int i = 0; i < kPatchSize; ++i) { uchar* pixel = m_patchImage.ptr(i); for (int j = 0; j < kPatchSize; ++j, ++pixel, ++ind) { m_featVec[ind] = ((double)*pixel)/255; //得到各个像素点的数值,存入m_featVec中。 } } }
Histogram特征:将图像分为4层,第i层分为i*i个cell,每个cell计算其16个强度的直方统计分布向量,其特征维数为(1+4+9+16)*16=480维
/* * Struck: Structured Output Tracking with Kernels * * Code to accompany the paper: * Struck: Structured Output Tracking with Kernels * Sam Hare, Amir Saffari, Philip H. S. Torr * International Conference on Computer Vision (ICCV), 2011 * * Copyright (C) 2011 Sam Hare, Oxford Brookes University, Oxford, UK * * This file is part of Struck. * * Struck is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Struck is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Struck. If not, see <http://www.gnu.org/licenses/>. * */ #include "HistogramFeatures.h" #include "Config.h" #include "Sample.h" #include "Rect.h" #include <iostream> using namespace Eigen; using namespace cv; using namespace std; static const int kNumBins = 16; //直方图 强度 static const int kNumLevels = 4;//层数 static const int kNumCellsX = 3;//cell个数 static const int kNumCellsY = 3;//cell个数 HistogramFeatures::HistogramFeatures(const Config& conf) { int nc = 0; for (int i = 0; i < kNumLevels; ++i) { //nc += 1 << 2*i; nc += (i+1)*(i+1); } SetCount(kNumBins*nc);//设置特征维数大小 480维 cout << "histogram bins: " << GetCount() << endl; } void HistogramFeatures::UpdateFeatureVector(const Sample& s) { IntRect rect = s.GetROI(); // note this truncates to integers //cv::Rect roi(rect.XMin(), rect.YMin(), rect.Width(), rect.Height()); //cv::resize(s.GetImage().GetImage(0)(roi), m_patchImage, m_patchImage.size()); m_featVec.setZero(); VectorXd hist(kNumBins); int histind = 0; for (int il = 0; il < kNumLevels; ++il) { //第il层划分cell个单元 int nc = il+1; float w = s.GetROI().Width()/nc; float h = s.GetROI().Height()/nc; FloatRect cell(0.f, 0.f, w, h); //获取16个强度的直方图的分布图 for (int iy = 0; iy < nc; ++iy) { cell.SetYMin(s.GetROI().YMin()+iy*h); for (int ix = 0; ix < nc; ++ix) { cell.SetXMin(s.GetROI().XMin()+ix*w); s.GetImage().Hist(cell, hist); m_featVec.segment(histind*kNumBins, kNumBins) = hist; ++histind; } } } m_featVec /= histind; }