leveldb学习:DBimpl

leveldb将数据库的有关操作都定义在了DB类,它负责整个系统功能组件的连接和调用,是整个系统的脊柱。

level::DB是一个接口类,真正的实现在DBimpl类。
作者在文档impl.html中描述了leveldb的实现,其中包括文件组织、compaction和recovery等等。

DBimpl的成员变量包括:字符比较器internal_comparator_、配置类options_、bool型状态量、string型DB库名、cache对象、memtable对象、versionset对象等等前面所说的组件。

前面的讲解组件部分时,分散地介绍过leveldb的文件系统。这里下面来统一说明下创建一个DB,会在硬盘里生成一些什么样的文件,以下翻译自impl.html:
1 dbname/[0-9]+.log:
log文件包含了最新的db更新,每个entry更新都以append的方式追加到文件结尾。
2 dbname/[0-9]+.sst:db的sstable文件
Leveldb把sstable文件通过level的方式组织起来,从log文件中生成的sstable被放在level 0。当level 0的sstable文件个数超过设置时,leveldb就把所有的level 0文件,以及有重合的level 1文件merge起来,组织成一个新的level 1文件。
3 dbname/MANIFEST-[0-9]+:DB元信息文件
它记录的是leveldb的元信息,比如DB使用的Comparator名,以及各SSTable文件的管理信息:如Level层数、文件名、最小key和最大key等等。
4 dbname/CURRENT:记录当前正在使用的Manifest文件
它的内容就是当前的manifest文件名;因为在LevleDb的运行过程中,随着Compaction的进行,新的SSTable文件被产生,老的文件被废弃。并生成新的Manifest文件来记载sstable的变动,而CURRENT则用来记录我们关心的Manifest文件。
5 dbname/log:系统的运行日志,和options_.info_log有关,记录系统的运行信息或者错误日志。

主要函数:

Options SanitizeOptions(const std::string& dbname,
                        const InternalKeyComparator* icmp,
                        const InternalFilterPolicy* ipolicy,
                        const Options& src)

option修正函数,将用户定义的option做一定的检查和修正,返回规范的option对象。主要就是设置字符比较器,检查一些参数的设置(比如最大文件大小、写缓冲区的大小,sstable的block大小是否在规定值范围内)、建立log文件等等。

Status DBImpl::NewDB() {
  VersionEdit new_db;
  new_db.SetComparatorName(user_comparator()->Name()); new_db.SetLogNumber(0); new_db.SetNextFile(2); new_db.SetLastSequence(0); const std::string manifest = DescriptorFileName(dbname_, 1); WritableFile* file; Status s = env_->NewWritableFile(manifest, &file);
  if (!s.ok()) {
    return s;
  }
  {
    log::Writer log(file);
    std::string record;
    new_db.EncodeTo(&record);
    s = log.AddRecord(record);
    if (s.ok()) {
      s = file->Close();
    }
  }
  delete file;
  if (s.ok()) {
    // Make "CURRENT" file that points to the new manifest file.
    s = SetCurrentFile(env_, dbname_, 1);
  } else {
    env_->DeleteFile(manifest);
  }
  return s;
}

初始化一个新的DB对象,主要创建一个manfest文件,并调用versionedit::encodeto写入新db的信息(如comparator,lognumder,nextfilenumber,sstable信息),此函数在open()操作中被调用,完成创建DB的一步。

void DBImpl::DeleteObsoleteFiles()
根据i节点删除db中的文件,会对文件的类型和内容做一个判断,首先,正在compact的sstable不删,versionset中各个版本下的sstable文件不删,当前的log和manfest文件不删。调用env_->DeleteFile删除文件。

Status DBImpl::Recover(VersionEdit* edit) 

DB恢复函数,基于前面介绍的文件系统
1.recover首先找到当前数据库dbname_路径下的current文件,参考函数CurrentFileName(dbname_),文件错误或者不存在,恢复都无法继续进行),2.然后调用versionset::recover(),读取manfest文件,通过一个versionedit对象中间过渡,恢复出新的version。
3.遍历dbname_文件下的文件,对比当前版本集合versions_中记录的sstable,如果缺失,输出缺失的文件i节点,recover失败,否则
恢复log文件(参考RecoverLogFile函数)

Status DBImpl::RecoverLogFile(uint64_t log_number,
                              VersionEdit* edit,
                              SequenceNumber* max_sequence)

从log文件中逐条恢复entry,并写入新建立的memtable。并在合适的条件下(memtable大小大于写缓存下限:mem->ApproximateMemoryUsage() > options_.write_buffer_size),写入level_0的sstable中(参考函数WriteLevel0Table)

Status DBImpl::WriteLevel0Table(MemTable* mem, VersionEdit* edit,
                                Version* base)

将memtable dump到磁盘,也就是level-0的sstable中。
1.首先产生一个新文件,并记录在文件描述结构FileMetaData中
2.利用memtable的迭代器Iterator遍历memtable中的KV数据,构造sstable(参考函数BuildTable,还记得前面介绍table和block么,要对memtable的kv做进一步的打包,才能形成kv的磁盘形式)
3.把新的文件变化信息存储进versionedit,并记录这次compact的信息,主要是耗时和写入的sstable大小。
注:PickLevelForMemTableOutput函数,新的sstable定级,不能和同级的sstable有overlap,也不能和上级的sstable overlap太多(> kMaxGrandParentOverlapBytes)
WriteLevel0Table是函数CompactMemTable的核心。

leveldb中有且只有一个进程单独做compact,当主线程触发compact,调用void DBImpl::MaybeScheduleCompaction(),如果compact正在运行或者DB正在退出,直接返回;检查version中是否存在需要compact,有则触发后台调度env_->schedele(…)

void DBImpl::MaybeScheduleCompaction() {
  mutex_.AssertHeld();
  if (bg_compaction_scheduled_) {
    // Already scheduled
  } else if (shutting_down_.Acquire_Load()) {
    // DB is being deleted; no more background compactions
  } else if (!bg_error_.ok()) {
    // Already got an error; no more changes
  } else if (imm_ == NULL &&
             manual_compaction_ == NULL &&
             !versions_->NeedsCompaction()) {
    // No work to be done
  } else {
    bg_compaction_scheduled_ = true;
    env_->Schedule(&DBImpl::BGWork, this);
  }
}

schedele把compact处理程序函数指针和db对象指针传入后台任务队列,BGWork 是compact处理函数,Schedule函数如下:

void PosixEnv::Schedule(void (*function)(void*), void* arg) {
  PthreadCall("lock", pthread_mutex_lock(&mu_));
  // Start background thread if necessary
  if (!started_bgthread_) {
    started_bgthread_ = true;
    PthreadCall(
        "create thread",
        pthread_create(&bgthread_, NULL,  &PosixEnv::BGThreadWrapper, this));
  }
  // If the queue is currently empty, the background thread may currently be
  // waiting.
  if (queue_.empty()) {
    PthreadCall("signal", pthread_cond_signal(&bgsignal_));
  }
  // Add to priority queue
  queue_.push_back(BGItem());
  queue_.back().function = function;
  queue_.back().arg = arg;
  PthreadCall("unlock", pthread_mutex_unlock(&mu_));
}

将处理函数放入任务队列中,后台进程就可以不断地从queue_中取出任务函数,并执行。

实际compact处理进程是BackgroundCall和BackgroundCompaction。BackgroundCall完成一些判断,条件符合则调用BackgroundCompaction,compact完成后再次触发compact,重复上述过程。

void DBImpl::BackgroundCall() {
  MutexLock l(&mutex_);
  assert(bg_compaction_scheduled_);
  if (shutting_down_.Acquire_Load()) {
    // No more background work when shutting down.
  } else if (!bg_error_.ok()) {
    // No more background work after a background error.
  } else {
    BackgroundCompaction();
  }
  bg_compaction_scheduled_ = false;
  // Previous compaction may have produced too many files in a level,
  // so reschedule another compaction if needed.
  MaybeScheduleCompaction();
  bg_cv_.SignalAll();
}

实际compact流程:

void DBImpl::BackgroundCompaction() {
  mutex_.AssertHeld();
  //immutable先compact
  if (imm_ != NULL) {
    CompactMemTable();
    return;
  }
  //针对人为指定compact的key-range
  Compaction* c;
  bool is_manual = (manual_compaction_ != NULL);
  InternalKey manual_end;
  if (is_manual) {
    ManualCompaction* m = manual_compaction_;
    c = versions_->CompactRange(m->level, m->begin, m->end);
    m->done = (c == NULL);
    if (c != NULL) {
      manual_end = c->input(0, c->num_input_files(0) - 1)->largest;
    }
    Log(options_.info_log,
        "Manual compaction at level-%d from %s .. %s; will stop at %s\n",
        m->level,
        (m->begin ? m->begin->DebugString().c_str() : "(begin)"),
        (m->end ? m->end->DebugString().c_str() : "(end)"),
        (m->done ? "(end)" : manual_end.DebugString().c_str()));
  } else {
  //确定需要compact的level-n和sstable
    c = versions_->PickCompaction();
  }
  Status status;
  if (c == NULL) {
    // Nothing to do
  } else if (!is_manual && c->IsTrivialMove()) {
    // Move file to next level
    assert(c->num_input_files(0) == 1);
    FileMetaData* f = c->input(0, 0);
    c->edit()->DeleteFile(c->level(), f->number);
    c->edit()->AddFile(c->level() + 1, f->number, f->file_size,
                       f->smallest, f->largest);
    status = versions_->LogAndApply(c->edit(), &mutex_);
    if (!status.ok()) {
      RecordBackgroundError(status);
    }
    VersionSet::LevelSummaryStorage tmp;
    Log(options_.info_log, "Moved #%lld to level-%d %lld bytes %s: %s\n",
        static_cast<unsigned long long>(f->number),
        c->level() + 1,
        static_cast<unsigned long long>(f->file_size),
        status.ToString().c_str(),
        versions_->LevelSummary(&tmp));
  } else {
    CompactionState* compact = new CompactionState(c);
    status = DoCompactionWork(compact);
    if (!status.ok()) {
      RecordBackgroundError(status);
    }
    CleanupCompaction(compact);
    c->ReleaseInputs();
    DeleteObsoleteFiles();
  }
  delete c;
  if (status.ok()) {
    // Done
  } else if (shutting_down_.Acquire_Load()) {
    // Ignore compaction errors found during shutting down
  } else {
    Log(options_.info_log,
        "Compaction error: %s", status.ToString().c_str());
  }
  if (is_manual) {
    ManualCompaction* m = manual_compaction_;
    if (!status.ok()) {
      m->done = true;
    }
    if (!m->done) {
      // We only compacted part of the requested range. Update *m
      // to the range that is left to be compacted.
      m->tmp_storage = manual_end;
      m->begin = &m->tmp_storage;
    }
    manual_compaction_ = NULL;
  }
}

1.如果存在immutable memtable,将其dump成sstable,完成返回。
2.如果是外部触发的compact,根据manual_compaction指定的level/start_key/end_key,选出compaction(VersionSet::CompactRange())
3.如果不是manual compact,则根据db当前状态,选出compaction(VersionSet::PickCompaction()),考虑到level sstable的均衡性,提高查找效率。class compaction用于记录compact信息,包括compact的level和输入sstable文件等等,参见version_set.h。
4.对于非manual compact并且选出的sstable都处于level-n且不会造成过多的GrandparentOverrlap(Compaction::IsTrivialMove()),简单处理,将这些sstable推到level-n+1,更新db元信息即可(VersionSet::LogAndApply())。
5.其他情况,则一律根据确定出的Compaction,做具体的compact处理(DBImpl::DoCompactionWork()),最后做异常情况的清理(DBImpl::CleanupCompaction())。

DBimpl::DoCompactionWork(),实际的compact过程就是对多个已经排序的sstable做一次merge排序,丢弃掉相同的Key以及删除的数据。

Status DBImpl::DoCompactionWork(CompactionState* compact) {
  const uint64_t start_micros = env_->NowMicros();
  //immutable compact时计时用
  int64_t imm_micros = 0;  // Micros spent doing imm_ compactions
  Log(options_.info_log,  "Compacting %d@%d + %d@%d files",
      compact->compaction->num_input_files(0),
      compact->compaction->level(),
      compact->compaction->num_input_files(1),
      compact->compaction->level() + 1);
  assert(versions_->NumLevelFiles(compact->compaction->level()) > 0);
  assert(compact->builder == NULL);
  assert(compact->outfile == NULL);
  if (snapshots_.empty()) {
    compact->smallest_snapshot = versions_->LastSequence();
  } else {
    compact->smallest_snapshot = snapshots_.oldest()->number_;
  }
  // Release mutex while we're actually doing the compaction work
  mutex_.Unlock();
  //将选出的compaction中的sstable构造MergingIterator
  //对于level-0做归并排序,其他level的sstable做一个连接他们的iterator
  Iterator* input = versions_->MakeInputIterator(compact->compaction);
  //定位到每一个sstable的first,后面将遍历input sstable的entry
  input->SeekToFirst();
  Status status;
  ParsedInternalKey ikey;
  std::string current_user_key;
  bool has_current_user_key = false;
  SequenceNumber last_sequence_for_key = kMaxSequenceNumber;
  for (; input->Valid() && !shutting_down_.Acquire_Load(); ) {
    // Prioritize immutable compaction work
    //优先完成immutable的compact
    if (has_imm_.NoBarrier_Load() != NULL) {
      const uint64_t imm_start = env_->NowMicros();
      mutex_.Lock();
      if (imm_ != NULL) {
        CompactMemTable();
        bg_cv_.SignalAll();  // Wakeup MakeRoomForWrite() if necessary
      }
      mutex_.Unlock();
      imm_micros += (env_->NowMicros() - imm_start);
    }
    Slice key = input->key();
    //如果当前于grandparent层产生overlap的size超过阈值,立即结束当前写入的table的构造,写入磁盘
    if (compact->compaction->ShouldStopBefore(key) &&
        compact->builder != NULL) {
      status = FinishCompactionOutputFile(compact, input);
      if (!status.ok()) {
        break;
      }
    }
    // Handle key/value, add to state, etc.
    //key舍弃标志位
    bool drop = false;
    //key解析错误,放弃
    if (!ParseInternalKey(key, &ikey)) {
      // Do not hide error keys
      current_user_key.clear();
      has_current_user_key = false;
      last_sequence_for_key = kMaxSequenceNumber;
    } else {
      //key与前面的key重复,丢弃
      if (!has_current_user_key ||
          user_comparator()->Compare(ikey.user_key,
                                     Slice(current_user_key)) != 0) {
        // First occurrence of this user key
        current_user_key.assign(ikey.user_key.data(), ikey.user_key.size());
        has_current_user_key = true;
        last_sequence_for_key = kMaxSequenceNumber;
      }
      //key是删除类型,丢弃
      if (last_sequence_for_key <= compact->smallest_snapshot) {
        // Hidden by an newer entry for same user key
        drop = true;    // (A)
      } else if (ikey.type == kTypeDeletion &&
                 ikey.sequence <= compact->smallest_snapshot &&
                 compact->compaction->IsBaseLevelForKey(ikey.user_key)) {
        // For this user key:
        // (1) there is no data in higher levels
        // (2) data in lower levels will have larger sequence numbers
        // (3) data in layers that are being compacted here and have
        // smaller sequence numbers will be dropped in the next
        // few iterations of this loop (by rule (A) above).
        // Therefore this deletion marker is obsolete and can be dropped.
        drop = true;
      }
      last_sequence_for_key = ikey.sequence;
    }
#if 0
    Log(options_.info_log,
        " Compact: %s, seq %d, type: %d %d, drop: %d, is_base: %d, "
        "%d smallest_snapshot: %d",
        ikey.user_key.ToString().c_str(),
        (int)ikey.sequence, ikey.type, kTypeValue, drop,
        compact->compaction->IsBaseLevelForKey(ikey.user_key),
        (int)last_sequence_for_key, (int)compact->smallest_snapshot);
#endif
    if (!drop) {
      //如果output sstable未生成,构造新的tablebuilder
      // Open output file if necessary
      if (compact->builder == NULL) {
        status = OpenCompactionOutputFile(compact);
        if (!status.ok()) {
          break;
        }
      }
      //第一次写入的key作为output的smallest key
      if (compact->builder->NumEntries() == 0) {
        compact->current_output()->smallest.DecodeFrom(key);
      }
      //新的key写入时,更新largest key,并add进table
      compact->current_output()->largest.DecodeFrom(key);
      compact->builder->Add(key, input->value());
      // Close output file if it is big enough
      //当前sstable太大了就结束table构造
      if (compact->builder->FileSize() >=
          compact->compaction->MaxOutputFileSize()) {
        status = FinishCompactionOutputFile(compact, input);
        if (!status.ok()) {
          break;
        }
      }
    }
    //下一个key
    input->Next();
  }
  if (status.ok() && shutting_down_.Acquire_Load()) {
    status = Status::IOError("Deleting DB during compaction");
  }
  if (status.ok() && compact->builder != NULL) {
    status = FinishCompactionOutputFile(compact, input);
  }
  if (status.ok()) {
    status = input->status();
  }
  delete input;
  input = NULL;
  //将此次compact的信息加入dbimpl::status_
  CompactionStats stats;
  stats.micros = env_->NowMicros() - start_micros - imm_micros;
  for (int which = 0; which < 2; which++) {
    for (int i = 0; i < compact->compaction->num_input_files(which); i++) {
      stats.bytes_read += compact->compaction->input(which, i)->file_size;
    }
  }
  for (size_t i = 0; i < compact->outputs.size(); i++) {
    stats.bytes_written += compact->outputs[i].file_size; } mutex_.Lock(); stats_[compact->compaction->level() + 1].Add(stats); if (status.ok()) { status = InstallCompactionResults(compact); } if (!status.ok()) { RecordBackgroundError(status); } VersionSet::LevelSummaryStorage tmp; Log(options_.info_log, "compacted to: %s", versions_->LevelSummary(&tmp)); return status; }

你可能感兴趣的:(数据库,compact,leveldb,dbimpl)