一个DP
用矩阵快速幂加速
然后这个DP状态比较巧妙 以边作状态
#include<cstdio> #include<cstdlib> #include<algorithm> #include<cstring> #define cl(x) memset(x,0,sizeof(x)) using namespace std; inline char nc() { static char buf[100000],*p1=buf,*p2=buf; if (p1==p2) { p2=(p1=buf)+fread(buf,1,100000,stdin); if (p1==p2) return EOF; } return *p1++; } inline void read(int &x){ char c=nc(),b=1; for (;!(c>='0' && c<='9');c=nc()) if (c=='-') b=-1; for (x=0;c>='0' && c<='9';x=x*10+c-'0',c=nc()); x*=b; } const int P=45989; const int M=125; struct Matrix{ int a[M][M]; int n; Matrix(){ } Matrix(int _n,int i=0){ n=_n; cl(a); if (i) for (int j=1;j<=n;j++) a[j][j]=1; } friend Matrix operator * (const Matrix &A,const Matrix &B){ int n=A.n; Matrix ret(n); for (int i=1;i<=n;i++) for (int j=1;j<=n;j++) for (int k=1;k<=n;k++) (ret.a[i][j]+=A.a[i][k]*B.a[k][j]%P)%=P; return ret; } }A; struct edge{ int u,v; edge(int u=0,int v=0):u(u),v(v) { } }edges[M]; int tot=1; int n,m,round,S,T; inline Matrix Pow(Matrix a,int b){ Matrix ret(a.n,1); for (;b;b>>=1,a=a*a) if (b&1) ret=ret*a; return ret; } int ans[M],Ans; int main() { int iu,iv; freopen("t.in","r",stdin); freopen("t.out","w",stdout); read(n); read(m); read(round); read(S); read(T); S++; T++; for (int i=1;i<=m;i++) { read(iu); read(iv); iu++; iv++; edges[++tot]=edge(iu,iv); edges[++tot]=edge(iv,iu); } A=Matrix(tot); for (int i=2;i<=tot;i++) { for (int j=2;j<=tot;j++) { if ((i^1)==j) continue; if (edges[i].u==edges[j].v) A.a[i][j]=1; } if (edges[i].u==S) A.a[i][1]=1; } A=Pow(A,round); for (int i=1;i<=tot;i++) { ans[i]=A.a[i][1]; if (edges[i].v==T) (Ans+=ans[i])%=P; } printf("%d\n",Ans); return 0; }