Time Limit: 2000MS | Memory Limit: 65536K | |
Description
While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ's farms comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..N, M (1 ≤ M ≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.
As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .
To help FJ find out whether this is possible or not, he will supply you with complete maps to F (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.
Input
Output
Sample Input
2 3 3 1 1 2 2 1 3 4 2 3 1 3 1 3 3 2 1 1 2 3 2 3 4 3 1 8
Sample Output
NO YES
Hint
题目大意:判断是否存在负权回路?
只以1号点为源点做Bellman-Ford即可判断图中是否存在负权回路(该负权回路不一定以1号点为起点)
例如:
1
3 0 2
2 3 1
3 2 1
这组数据会输出YES
调试时能发现,dis[2],dis[3]每次都在更新,但是是在INF的基础上更新,所以要判断1号点是否可打2,3时,要判断dis[2],dis[3]是否 大于 图中的最大权值和才行
#include <cstdio> #include <cstring> #include <vector> #include <algorithm> using namespace std; const int MAXN=505; const int INF=0x3f3f3f3f; struct Edge { int s,e,v; Edge(int ss=0,int ee=0,int vv=0):s(ss),e(ee),v(vv) {} }u; int n,m,w,s,e,v; vector<Edge> edge; int dis[MAXN]; bool Bellman_Ford(int sta) {//可判断负权回路 bool relaxed; memset(dis,0x3f,sizeof(dis)); dis[sta]=0; for(int i=1;i<n;++i) { relaxed=false; for(int j=0;j<edge.size();++j) { if(dis[edge[j].s]+edge[j].v<dis[edge[j].e]) {//松弛 dis[edge[j].e]=dis[edge[j].s]+edge[j].v; relaxed=true; } } if(!relaxed) {//如果未更新,则不会再更新,且无负权回路 return false; } } for(int j=0;j<edge.size();++j) { if(dis[edge[j].s]+edge[j].v<dis[edge[j].e]) {//如果可以继续松弛,则存在负权回路 return true; } } return false; } int main() { int F; scanf("%d",&F); while(F-->0) { edge.clear(); scanf("%d%d%d",&n,&m,&w); for(int i=1;i<=m;++i) { scanf("%d%d%d",&s,&e,&v); edge.push_back(Edge(s,e,v)); edge.push_back(Edge(e,s,v)); } for(int i=1;i<=w;++i) { scanf("%d%d%d",&s,&e,&v); edge.push_back(Edge(s,e,-v)); } printf("%s\n",Bellman_Ford(1)?"YES":"NO"); } return 0; }