/************************************************************************/
/* Example */
/************************************************************************/
__global__ void shared_memory_1(float* result, int num, float* table_1)
{
__shared__ float sh_data[THREAD_SIZE];
int idx = threadIdx.x;
float ret = 0.0f;
sh_data[idx] = table_1[idx];
for (int i = 0; i < num; i++)
{
ret += sh_data[idx %BANK_CONFLICT];
}
result[idx] = ret;
extern __shared__ char array[];
__global__ void shared_memory_1(float* result, int num, float* table_1, int shared_size)
{
float* sh_data = (float*)array; // 这里就让sh_data指向了shared memory的第一个地址,就可以动态分配空间
float* sh_data2 = (float*)&sh_data[shared_size]; // 这里的shared_size的大小为sh_data的大小;
int idx = threadIdx.x;
float ret = 0.0f;
sh_data[idx] = table_1[idx];
for (int i = 0; i < num; i++)
{
ret += sh_data[idx %BANK_CONFLICT];
}
result[idx] = ret;
这里是动态分配的空间,extern __shared__ char array[];指定了shared的第一个变量的地址,这里其实是指向shared memory空间地址;后面的动态分配float* sh_data = (float*)array;让sh_data指向array其实就是指向shared memory上的第一个地址;
后面的float* sh_data2 = (float*)&sh_data[shared_size];这里的sh_data2是指向的第一个sh_data的shared_size的地址,就是sh_data就是有了shared_size的动态分配的空间;
入下图:
/************************************************************************/
/* Example */
/************************************************************************/
__global__ void shared_memory_1(float* result, int num, float* table_1)
{
__shared__ float sh_data[THREAD_SIZE];
int idx = threadIdx.x;
float ret = 0.0f;
sh_data[idx] = table_1[idx];
for (int i = 0; i < num; i++)
{
ret += sh_data[idx %BANK_CONFLICT];
}
result[idx] = ret;
// 1,2,3,4,5,6,7.....16
#define BANK_CONFLICT 16
这里的BANK_CONFLICT 定义为从1到16的大小,可以自己修改,来看看bank conflict对性能的影响;当BANK_CONFLICT为2的时候,就会通用有8个thread同时访问同一个bank,因为idx%2的取值只有2个0和1,所以16个都会访问bank0和bank1,以此类推,就可以测试整个的性能;
下面为示意图:
当然我们还可以利用16bank conflict,大家都访问同一个bank的同一个数据的时候,就可以形成一个broadcast,那样就会把数据同时广播给16个thread,这样就可以合理利用shared memory的broadcast的机会。
下面贴出代码,最好自己测试一下;
/********************************************************************
* shared_memory_test.cu
* This is a example of the CUDA program.
* Author: zhao.kaiyong(at)gmail.com
* http://blog.csdn.net/openhero
* http://www.comp.hkbu.edu.hk/~kyzhao/
*********************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <cutil.h>
#include <cutil_inline.h>
// 1,2,3,4,5,6,7.....16
#define BANK_CONFLICT 16
#define THREAD_SIZE 16
/************************************************************************/
/* static */
/************************************************************************/
__global__ void shared_memory_static(float* result, int num, float* table_1)
{
__shared__ float sh_data[THREAD_SIZE];
int idx = threadIdx.x;
float ret = 0.0f;
sh_data[idx] = table_1[idx];
for (int i = 0; i < num; i++)
{
ret += sh_data[idx%BANK_CONFLICT];
}
result[idx] = ret;
}
/************************************************************************/
/* dynamic */
/************************************************************************/
extern __shared__ char array[];
__global__ void shared_memory_dynamic(float* result, int num, float* table_1, int shared_size)
{
float* sh_data = (float*)array; // 这里就让sh_data指向了shared memory的第一个地址,就可以动态分配空间
float* sh_data2 = (float*)&sh_data[shared_size]; // 这里的shared_size的大小为sh_data的大小;
int idx = threadIdx.x;
float ret = 0.0f;
sh_data[idx] = table_1[idx];
for (int i = 0; i < num; i++)
{
ret += sh_data[idx%BANK_CONFLICT];
}
result[idx] = ret;
}
/************************************************************************/
/* Bank conflict */
/************************************************************************/
__global__ void shared_memory_bankconflict(float* result, int num, float* table_1)
{
__shared__ float sh_data[THREAD_SIZE];
int idx = threadIdx.x;
float ret = 0.0f;
sh_data[idx] = table_1[idx];
for (int i = 0; i < num; i++)
{
ret += sh_data[idx % BANK_CONFLICT];
}
result[idx] = ret;
}
/************************************************************************/
/* HelloCUDA */
/************************************************************************/
int main(int argc, char* argv[])
{
if ( cutCheckCmdLineFlag(argc, (const char**) argv, "device"))
{
cutilDeviceInit(argc, argv);
}else
{
int id = cutGetMaxGflopsDeviceId();
cudaSetDevice(id);
}
float *device_result = NULL;
float host_result[THREAD_SIZE] ={0};
CUDA_SAFE_CALL( cudaMalloc((void**) &device_result, sizeof(float) * THREAD_SIZE));
float *device_table_1 = NULL;
float host_table1[THREAD_SIZE] = {0};
for (int i = 0; i < THREAD_SIZE; i++ )
{
host_table1[i] = rand()%RAND_MAX;
}
CUDA_SAFE_CALL( cudaMalloc((void**) &device_table_1, sizeof(float) * THREAD_SIZE));
CUDA_SAFE_CALL( cudaMemcpy(device_table_1, host_table1, sizeof(float) * THREAD_SIZE, cudaMemcpyHostToDevice));
unsigned int timer = 0;
CUT_SAFE_CALL( cutCreateTimer( &timer));
CUT_SAFE_CALL( cutStartTimer( timer));
shared_memory_static<<<1, THREAD_SIZE>>>(device_result, 1000, device_table_1);
//shared_memory_dynamic<<<1, THREAD_SIZE>>>(device_result, 1000, device_table_1, 16);
//shared_memory_bankconflict<<<1, THREAD_SIZE>>>(device_result, 1000, device_table_1);
CUT_CHECK_ERROR("Kernel execution failed/n");
CUDA_SAFE_CALL( cudaMemcpy(host_result, device_result, sizeof(float) * THREAD_SIZE, cudaMemcpyDeviceToHost));
CUT_SAFE_CALL( cutStopTimer( timer));
printf("Processing time: %f (ms)/n", cutGetTimerValue( timer));
CUT_SAFE_CALL( cutDeleteTimer( timer));
for (int i = 0; i < THREAD_SIZE; i++)
{
printf("%f ", host_result[i]);
}
CUDA_SAFE_CALL( cudaFree(device_result));
CUDA_SAFE_CALL( cudaFree(device_table_1));
cutilExit(argc, argv);
}