基于矩阵实现的广度优先搜索

1.广度优先算法

广度优先算法是指,从指定结点,沿着图的宽度遍历所有节点。在Wikipedia上的定义如下:

Breadth-first search (BFS) is an algorithm for traversing or searching tree or graph data structures. It starts at the tree root (or some arbitrary node of a graph, sometimes referred to as a 'search key') and explores the neighbor nodes first, before moving to the next level neighbors.


2.传统算法

2.1算法思想

广度优先搜索类似于树的层次遍历。其算法思路如下:
  1. 从图中的某个顶点V出发,访问之;并将其访问标志置为已被访问,即visited[i]=1;
  2. 依次访问顶点V的各个未被访问过的邻接 点,将V的全部邻接点都访问到;
  3. 分别从这些邻接点出发,依次访问它们的未被访问过的邻接点,并使“先被访问的顶 点的邻接点”先于“后被访问的顶点的邻接点”被访问,直到图中所有已被访问过的顶 点的邻接点都被访问到。

依此类推,直到图中所有顶点都被访问完为止。


2.2算法实现

下面是Java实现的无向图的广度优先搜索:

public class BreadthFirstPaths {
    private static final int INFINITY = Integer.MAX_VALUE;
    private boolean[] marked;  // marked[v] = is there an s-v path
    private int[] edgeTo;      // edgeTo[v] = previous edge on shortest s-v path
    private int[] distTo;      // distTo[v] = number of edges shortest s-v path

    /**
     * Computes the shortest path between the source vertex <tt>s</tt>
     * and every other vertex in the graph <tt>G</tt>.
     * @param G the graph
     * @param s the source vertex
     */
    public BreadthFirstPaths(Graph G, int s) {
        marked = new boolean[G.V()];
        distTo = new int[G.V()];
        edgeTo = new int[G.V()];
        bfs(G, s);

        assert check(G, s);
    }

    /**
     * Computes the shortest path between any one of the source vertices in <tt>sources</tt>
     * and every other vertex in graph <tt>G</tt>.
     * @param G the graph
     * @param sources the source vertices
     */
    public BreadthFirstPaths(Graph G, Iterable<Integer> sources) {
        marked = new boolean[G.V()];
        distTo = new int[G.V()];
        edgeTo = new int[G.V()];
        for (int v = 0; v < G.V(); v++)
            distTo[v] = INFINITY;
        bfs(G, sources);
    }


    // breadth-first search from a single source
    private void bfs(Graph G, int s) {
        Queue<Integer> q = new Queue<Integer>();
        for (int v = 0; v < G.V(); v++)
            distTo[v] = INFINITY;
        distTo[s] = 0;
        marked[s] = true;
        q.enqueue(s);

        while (!q.isEmpty()) {
            int v = q.dequeue();
            for (int w : G.adj(v)) {
                if (!marked[w]) {
                    edgeTo[w] = v;
                    distTo[w] = distTo[v] + 1;
                    marked[w] = true;
                    q.enqueue(w);
                }
            }
        }
    }

    // breadth-first search from multiple sources
    private void bfs(Graph G, Iterable<Integer> sources) {
        Queue<Integer> q = new Queue<Integer>();
        for (int s : sources) {
            marked[s] = true;
            distTo[s] = 0;
            q.enqueue(s);
        }
        while (!q.isEmpty()) {
            int v = q.dequeue();
            for (int w : G.adj(v)) {
                if (!marked[w]) {
                    edgeTo[w] = v;
                    distTo[w] = distTo[v] + 1;
                    marked[w] = true;
                    q.enqueue(w);
                }
            }
        }
    }

    /**
     * Is there a path between the source vertex <tt>s</tt> (or sources) and vertex <tt>v</tt>?
     * @param v the vertex
     * @return <tt>true</tt> if there is a path, and <tt>false</tt> otherwise
     */
    public boolean hasPathTo(int v) {
        return marked[v];
    }

    /**
     * Returns the number of edges in a shortest path between the source vertex <tt>s</tt>
     * (or sources) and vertex <tt>v</tt>?
     * @param v the vertex
     * @return the number of edges in a shortest path
     */
    public int distTo(int v) {
        return distTo[v];
    }

    /**
     * Returns a shortest path between the source vertex <tt>s</tt> (or sources)
     * and <tt>v</tt>, or <tt>null</tt> if no such path.
     * @param v the vertex
     * @return the sequence of vertices on a shortest path, as an Iterable
     */
    public Iterable<Integer> pathTo(int v) {
        if (!hasPathTo(v)) return null;
        Stack<Integer> path = new Stack<Integer>();
        int x;
        for (x = v; distTo[x] != 0; x = edgeTo[x])
            path.push(x);
        path.push(x);
        return path;
    }


    // check optimality conditions for single source
    private boolean check(Graph G, int s) {

        // check that the distance of s = 0
        if (distTo[s] != 0) {
            StdOut.println("distance of source " + s + " to itself = " + distTo[s]);
            return false;
        }

        // check that for each edge v-w dist[w] <= dist[v] + 1
        // provided v is reachable from s
        for (int v = 0; v < G.V(); v++) {
            for (int w : G.adj(v)) {
                if (hasPathTo(v) != hasPathTo(w)) {
                    StdOut.println("edge " + v + "-" + w);
                    StdOut.println("hasPathTo(" + v + ") = " + hasPathTo(v));
                    StdOut.println("hasPathTo(" + w + ") = " + hasPathTo(w));
                    return false;
                }
                if (hasPathTo(v) && (distTo[w] > distTo[v] + 1)) {
                    StdOut.println("edge " + v + "-" + w);
                    StdOut.println("distTo[" + v + "] = " + distTo[v]);
                    StdOut.println("distTo[" + w + "] = " + distTo[w]);
                    return false;
                }
            }
        }

        // check that v = edgeTo[w] satisfies distTo[w] + distTo[v] + 1
        // provided v is reachable from s
        for (int w = 0; w < G.V(); w++) {
            if (!hasPathTo(w) || w == s) continue;
            int v = edgeTo[w];
            if (distTo[w] != distTo[v] + 1) {
                StdOut.println("shortest path edge " + v + "-" + w);
                StdOut.println("distTo[" + v + "] = " + distTo[v]);
                StdOut.println("distTo[" + w + "] = " + distTo[w]);
                return false;
            }
        }

        return true;
    }

    /**
     * Unit tests the <tt>BreadthFirstPaths</tt> data type.
     */
    public static void main(String[] args) {
        In in = new In(args[0]);
        Graph G = new Graph(in);
        // StdOut.println(G);

        int s = Integer.parseInt(args[1]);
        BreadthFirstPaths bfs = new BreadthFirstPaths(G, s);

        for (int v = 0; v < G.V(); v++) {
            if (bfs.hasPathTo(v)) {
                StdOut.printf("%d to %d (%d):  ", s, v, bfs.distTo(v));
                for (int x : bfs.pathTo(v)) {
                    if (x == s) StdOut.print(x);
                    else        StdOut.print("-" + x);
                }
                StdOut.println();
            }
            else {
                StdOut.printf("%d to %d (-):  not connected\n", s, v);
            }
        }
    }
}

3.基于矩阵的算法

3.1算法推导

邻接矩阵的定义形式:结点i和结点j邻接,则邻接矩阵A(i,j) =1;邻接矩阵对角线元素值为1,即A(i,i)=1;结点i和结点j不邻接,则邻接矩阵A(i,j)=0,可表示为:

起始向量定义形式为:
此时,由 表示y的第i行,包含结点i的邻结点,即y的第i行中非零值,是结点i经过一条路径连接的顶点。以此类推,经过若干次相乘,即经过若干次搜索,可以得到BFS搜索结果。用公式可以表示为:
亦可参考下图演示过程:
基于矩阵实现的广度优先搜索_第1张图片

其中BFS向量每经过一次乘运算后,新添加的非零值即为搜索结点。
另外,不难发现如果用与对角矩阵X进行若干次相乘后,即可得到以图中每个结点为起点,进行BFS搜索后构成的结果矩阵。

3.2算法实现

用Python实现的代码:
import numpy as np
from numpy.random import rand

def init(dimension, startVertex = 0):
    mat = np.ones((dimension, dimension), dtype = np.int32)
    mat[(rand(dimension ** 2 / 2) * dimension).astype(int), (rand(dimension ** 2 / 2) * dimension).astype(int)] = 0
    for i in range(dimension):
        mat[i, i] = 1
    return mat

def bfsSingal(adjacencyMat, startVertex):
    def nonZeroNum(vector):
        return len(np.nonzero(vector)[0])
    adjacencyMat = adjacencyMat.T
    n = np.shape(adjacencyMat)[0]
    current = np.zeros((n, 1), dtype = np.int32)
    current[startVertex, 0] = 1
    i = 0
    stop = False
    print("The %sth search: %s" % (i, current.T))
    while(not stop):
        i += 1
        next = np.dot(adjacencyMat, current)
        stop = nonZeroNum(current) == nonZeroNum(next)
        if(not stop):
            current = next
            print("The %sth search: %s" % (i, current.T))
        
if __name__ == "__main__":
    adjacencyMat = init(7, 3)
    adjacencyMat1 = np.array([[1, 1, 0, 1, 0, 0, 0],
                      [0, 1, 0, 0, 1, 0, 1],
                      [0, 0, 1, 0, 0, 1, 0],
                      [1, 0, 1, 1, 0, 0, 0],
                      [0, 0, 0, 0, 1, 1, 0],
                      [0, 0, 1, 0, 0, 1, 0],
                      [0, 0, 1, 1, 1, 0, 1]])
    adjacencyMat2 = np.array([[1, 1, 0, 1, 0, 0, 0],
                      [0, 1, 0, 0, 1, 0, 1],
                      [0, 0, 1, 0, 0, 1, 0],
                      [1, 0, 1, 1, 0, 0, 0],
                      [0, 0, 0, 0, 1, 1, 0],
                      [0, 0, 1, 0, 0, 1, 1],
                      [0, 0, 1, 1, 1, 0, 1]])
    bfsSingal(adjacencyMat1, 3)


你可能感兴趣的:(广度优先搜索,bfs,图计算)