POJ 3680 最小费用最大流

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>
#include <map>
using namespace std;
const int maxn = 500;
const int maxm = 1E5 + 10;
const int INF = 0x3f3f3f3f;
struct Edge
{
	int to, next, cap, flow, cost;
};
Edge edge[maxm];
int head[maxn], tol, pre[maxn], dis[maxn], n, k, m, a[maxn], b[maxn], w[maxn], res[maxm], T, cnt;
bool vis[maxn];
void addedge(int u, int v, int cost, int cap)
{
	edge[tol].to = v;
	edge[tol].cap = cap;
	edge[tol].cost = cost;
	edge[tol].flow = 0;
	edge[tol].next = head[u];
	head[u] = tol++;
	edge[tol].to = u;
	edge[tol].cap = 0;
	edge[tol].cost = -cost;
	edge[tol].flow = 0;
	edge[tol].next = head[v];
	head[v] = tol++;
}
bool spfa(int s, int t)
{
	queue<int>q;
	memset(dis, INF, sizeof(dis));
	memset(vis, 0, sizeof(vis));
	memset(pre, -1, sizeof(pre));
	dis[s] = 0;
	vis[s] = true;
	q.push(s);
	while (!q.empty())
	{
		int u = q.front(); q.pop();
		vis[u] = false;
		for (int i = head[u]; i != -1; i = edge[i].next)
		{
			int v = edge[i].to;
			if (edge[i].cap > edge[i].flow && dis[v] > dis[u] + edge[i].cost)
			{
				dis[v] = dis[u] + edge[i].cost;
				pre[v] = i;
				if (!vis[v])
				{
					vis[v] = true;
					q.push(v);
				}
			}
		}
	}
	return (pre[t] == -1 ? false : true);
}
int MinCostMaxFlow(int s, int t, int &cost)
{
	int flow = 0; cost = 0;
	while (spfa(s, t))
	{
		int Min = INF;
		for (int i = pre[t]; i != -1; i = pre[edge[i ^ 1].to])
			Min = min(Min, edge[i].cap - edge[i].flow);
		for (int i = pre[t]; i != -1; i = pre[edge[i ^ 1].to])
		{
			edge[i].flow += Min;
			edge[i ^ 1].flow -= Min;
			cost += edge[i].cost * Min;
		}
		flow += Min;
	}
	return flow;
}
int main(int argc, char const *argv[])
{
	scanf("%d", &T);
	while (T--)
	{
		cnt = 0, tol = 0;
		memset(head, -1, sizeof(head));
		memset(res, -1, sizeof(res));
		scanf("%d%d", &n, &k);
		for (int i = 0; i < n; i++)
			scanf("%d%d%d", &a[i], &b[i], &w[i]), res[a[i]] = 0, res[b[i]] = 0;
		for (int i = 0; i < maxm; i++)
			if (res[i] == 0) res[i] = ++cnt;
		for (int i = 0; i < cnt; i++)
			addedge(i + 1, i + 2, 0, INF);
		for (int i = 0; i < n; i++)
			addedge(res[a[i]], res[b[i]], -w[i], 1);
		addedge(0, 1, 0, k);
		addedge(cnt, cnt + 1, 0, k);
		int ans = 0;
		MinCostMaxFlow(0, cnt + 1, ans);
		printf("%d\n", -ans);
	}
	return 0;
}



题意:给定n个带权开区间,选择其中一些使得权值最大并且区间重叠层数不超过k。

题解:最小费用流,区间有两百个,可以用左边的点发出一条到右边的点的边,容量为1,费用为负的权值。然后从左往右将依次将相邻的两个点都连起来,权值为0,容量为k,也就是说,如果选了这个区间,就会从费用为负数的边流过去,否则,就是从这个费用为0的边流过去。然后建立一个虚拟源点与最左边的点相连,权值为0,容量为k,这样就保证了重叠数之多为k,因为增广路上所经过的区间必定是不重合的,而流量只有k,所以满足题意。

你可能感兴趣的:(POJ 3680 最小费用最大流)