CF 一个不知道题号的题。。 B. ShortestPath Query

B. ShortestPath Query
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

De Prezer loves troyic paths.Consider we have a graph with n vertices and m edges.Edges are directed in one way.And there is at most one edge from any vertex to any other vertex.If there is an edge from v to u, then c(v, u) is its color and w(v, u) is its length.Otherwise,c(v, u) = w(v, u) =  - 1.

A sequence p1, p2, ..., pk is a troyic path is and only if for each 1 ≤ i ≤ k1 ≤ pi ≤ n and if i < k, then c(pi, pi + 1) >  - 1 and if i + 1 < k, then c(pi, pi + 1) ≠ c(pi + 1, pi + 2) .

The length of such troyic path is  and it's called a p1 - pk path.

In such graph, length of the shortest path from vertex v to u is the minimum length of all v - u paths.(The length of the shortest path from any vertex to itself equals 0)

De Prezer gives you a graph like above and a vertex s.

De Prezer also loves query. So he gives you q queries and in each query, gives you number t and you should print the length of the shortest path from s to t (or  - 1 if there is no troyic path from s to t)

Input

The first line of input contains three integers n and m and C, the number of vertices, the numbers of edges and the number of valid colors.

The next m lines, each line contains 4 integers v, u, w(v, u), c(v, u) (1 ≤ v, u ≤ n and v ≠ u and 1 ≤ w(v, u) ≤ 109 and1 ≤ c(v, u) ≤ C).

The line after that contains integer s and q.

The next q lines, each line contains information of one query, number t.

1 ≤ n, m, C, q ≤ 105

m ≤ n(n - 1)

1 ≤ s, t ≤ n

Output

For each query, print the answer.

Sample test(s)
input
5 4 1000
1 2 10 1
2 3 10 2
3 4 10 2
4 5 10 1
1 5
1
2
3
4
5
output
0
10
20
-1
-1
input
5 5 2
1 2 10 1
2 3 10 2
3 4 10 1
4 5 10 2
1 5 39 1
1 5
1
2
3
4
5
output
0
10
20
30
39



题目就是求路径中任意两条边颜色不同的最短路径。然后思路就是记录最短路和与最短路颜色不同的最短路,其实就是最短路和次短路(不同颜色),然后dijkstra算法优先队列搞一下就好了。

#pragma warning(disable:4996)
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <iostream>
using namespace std;
typedef long long LL;
const LL inf = 10000000000000000LL;
const int N = 100005;

struct node {
	LL len;
	int pos, col;
	node(){}
	node(int pos, LL len, int col) :pos(pos), len(len), col(col) {}
	bool operator<(const node &op)const {
		return len > op.len;
	}
};

int fst[N], nxt[N], to[N], c[N], w[N], e;
int n, m, C;
LL dis[N][2];//0->最小,1->跟最小颜色不同的次小
int color[N][2];//相应颜色


void add(int u, int v, int len, int col) {
	to[e] = v;
	w[e] = len;
	c[e] = col;
	nxt[e] = fst[u];
	fst[u] = e++;
}

void dijkstra(int s) {
	priority_queue<node>q;
	for (int i = 1; i <= n; i++) {
		dis[i][0] = dis[i][1] = inf;
	}
	memset(color, 0, sizeof color);
	dis[s][0] = dis[s][1] = 0;
	q.push(node(s, 0, 0));
	while (!q.empty()) {
		node now = q.top(); q.pop();
		int u = now.pos;
		for (int i = fst[u]; ~i; i = nxt[i]) {
			int v = to[i], col = c[i], len = w[i];
			if (col == now.col)continue;
			if (dis[v][0] > now.len + len) {
				dis[v][0] = now.len + len;
				color[v][0] = col;
				q.push(node(v, dis[v][0], color[v][0]));
			}
			//注意这里判断一下颜色不能跟最短路的一样!!!
			else if (color[v][0] != col&&dis[v][1] > now.len + len) {
				dis[v][1] = now.len + len;
				color[v][1] = col;
				q.push(node(v, dis[v][1], color[v][1]));
			}
		}
	}

}

int main() {
	e = 0;
	memset(fst, -1, sizeof fst);
	scanf("%d%d%d", &n, &m, &C);
	for (int i = 1; i <= m; i++) {
		int u, v, len, col;
		scanf("%d%d%d%d", &u, &v, &len, &col);
		add(u, v, len, col);
	}
	
	int q, s;
	scanf("%d%d", &s, &q);
	dijkstra(s);
	while (q--) {
		int t; scanf("%d", &t);
		if (dis[t][0] == inf)dis[t][0] = -1;
		printf("%I64d\n", dis[t][0]);
	}
	return 0;
}


你可能感兴趣的:(CF 一个不知道题号的题。。 B. ShortestPath Query)