De Prezer loves troyic paths.Consider we have a graph with n vertices and m edges.Edges are directed in one way.And there is at most one edge from any vertex to any other vertex.If there is an edge from v to u, then c(v, u) is its color and w(v, u) is its length.Otherwise,c(v, u) = w(v, u) = - 1.
A sequence p1, p2, ..., pk is a troyic path is and only if for each 1 ≤ i ≤ k, 1 ≤ pi ≤ n and if i < k, then c(pi, pi + 1) > - 1 and if i + 1 < k, then c(pi, pi + 1) ≠ c(pi + 1, pi + 2) .
The length of such troyic path is and it's called a p1 - pk path.
In such graph, length of the shortest path from vertex v to u is the minimum length of all v - u paths.(The length of the shortest path from any vertex to itself equals 0)
De Prezer gives you a graph like above and a vertex s.
De Prezer also loves query. So he gives you q queries and in each query, gives you number t and you should print the length of the shortest path from s to t (or - 1 if there is no troyic path from s to t)
The first line of input contains three integers n and m and C, the number of vertices, the numbers of edges and the number of valid colors.
The next m lines, each line contains 4 integers v, u, w(v, u), c(v, u) (1 ≤ v, u ≤ n and v ≠ u and 1 ≤ w(v, u) ≤ 109 and1 ≤ c(v, u) ≤ C).
The line after that contains integer s and q.
The next q lines, each line contains information of one query, number t.
1 ≤ n, m, C, q ≤ 105
m ≤ n(n - 1)
1 ≤ s, t ≤ n
For each query, print the answer.
5 4 1000 1 2 10 1 2 3 10 2 3 4 10 2 4 5 10 1 1 5 1 2 3 4 5
0 10 20 -1 -1
5 5 2 1 2 10 1 2 3 10 2 3 4 10 1 4 5 10 2 1 5 39 1 1 5 1 2 3 4 5
0 10 20 30 39
题目就是求路径中任意两条边颜色不同的最短路径。然后思路就是记录最短路和与最短路颜色不同的最短路,其实就是最短路和次短路(不同颜色),然后dijkstra算法优先队列搞一下就好了。
#pragma warning(disable:4996) #include <cstdio> #include <cstring> #include <algorithm> #include <queue> #include <iostream> using namespace std; typedef long long LL; const LL inf = 10000000000000000LL; const int N = 100005; struct node { LL len; int pos, col; node(){} node(int pos, LL len, int col) :pos(pos), len(len), col(col) {} bool operator<(const node &op)const { return len > op.len; } }; int fst[N], nxt[N], to[N], c[N], w[N], e; int n, m, C; LL dis[N][2];//0->最小,1->跟最小颜色不同的次小 int color[N][2];//相应颜色 void add(int u, int v, int len, int col) { to[e] = v; w[e] = len; c[e] = col; nxt[e] = fst[u]; fst[u] = e++; } void dijkstra(int s) { priority_queue<node>q; for (int i = 1; i <= n; i++) { dis[i][0] = dis[i][1] = inf; } memset(color, 0, sizeof color); dis[s][0] = dis[s][1] = 0; q.push(node(s, 0, 0)); while (!q.empty()) { node now = q.top(); q.pop(); int u = now.pos; for (int i = fst[u]; ~i; i = nxt[i]) { int v = to[i], col = c[i], len = w[i]; if (col == now.col)continue; if (dis[v][0] > now.len + len) { dis[v][0] = now.len + len; color[v][0] = col; q.push(node(v, dis[v][0], color[v][0])); } //注意这里判断一下颜色不能跟最短路的一样!!! else if (color[v][0] != col&&dis[v][1] > now.len + len) { dis[v][1] = now.len + len; color[v][1] = col; q.push(node(v, dis[v][1], color[v][1])); } } } } int main() { e = 0; memset(fst, -1, sizeof fst); scanf("%d%d%d", &n, &m, &C); for (int i = 1; i <= m; i++) { int u, v, len, col; scanf("%d%d%d%d", &u, &v, &len, &col); add(u, v, len, col); } int q, s; scanf("%d%d", &s, &q); dijkstra(s); while (q--) { int t; scanf("%d", &t); if (dis[t][0] == inf)dis[t][0] = -1; printf("%I64d\n", dis[t][0]); } return 0; }