Given two words (start and end), and a dictionary, find the length of shortest transformation sequence from start to end, such that:
For example,
Given:
start = "hit"
end = "cog"
dict = ["hot","dot","dog","lot","log"]
As one shortest transformation is "hit" -> "hot" -> "dot" -> "dog" -> "cog"
,
return its length 5
.
Note:
int path = 1;2. 我们使用空串“”来作为层与层的分隔符,不同于树的结点,我们用NULL。这里字符串和NULL无法进行比较。
char tmp = str[i];
str[i] = tmp; //重置回原来的单词4. set 删除元素
(1) | iterator erase (const_iterator position); |
---|
(2) | size_type erase (const value_type& val); |
---|
(3) | iterator erase (const_iterator first, const_iterator last); |
---|
if(str == end) return path + 1; //如果改变后的单词等于end 返回path+1复杂度:最坏情况就是把所有长度为L的字符串都看一遍,或者字典内的字符串都看一遍。长度为L的字符串总共有26^L.时间复杂度O(26^L),空间上需要存储访问情况,O(size(dict)).
class Solution { public: int ladderLength(string start, string end, unordered_set<string> &dict) { if(start.size() == 0 || end.size() == 0) return 0; queue<string> wordQ; wordQ.push(start); wordQ.push(""); int path = 1; while(!wordQ.empty()) { string str = wordQ.front(); wordQ.pop(); if(str != "") { int len = str.size(); for(int i = 0; i < len; i++) { char tmp = str[i]; for(char c = 'a'; c <= 'z'; c++) { if(c == tmp) continue; str[i] = c; if(str == end) return path + 1; //如果改变后的单词等于end 返回path+1 if(dict.find(str) != dict.end()) { wordQ.push(str); dict.erase(str); //字典内删除这个词 防止反复走 } } str[i] = tmp; //重置回原来的单词 } } else if(!wordQ.empty()) { //到达当前层的结尾,并且不是最后一层的结尾 path++; wordQ.push(""); } } return 0; } };