n个点m条边的带权有向图,现在要将某些边涂上颜色,使得每个点恰好在k个有颜色的环上。
每个点都在k各环中,说明每个点的 入度=出度=k。 用费用流搞,增加源汇点s ,t,将每个点拆成两个点,u跟u+n,一个代表出度,一个代表入度。从s向每个u连<k, 0>的边,从每个u+n向t连<k, 0>的边,分别代表入度跟出度的上限。 然后对于原图中的有向边<u, v, d>, 从u向v+n连一条<1, d>的边。这样求s->t的最小费用最大流。如果能漫流,答案就是最小费用。否则无解。
#include<algorithm> #include<iostream> #include<cstdio> #include<cstring> #include<queue> #define REP(i, n) for(int i=0; i<n; i++) #define FF(i, a, b) for(int i=a; i<b; i++) #define CLR(a, b) memset(a, b, sizeof(a)) #define PB push_back #define LL long long using namespace std; const int maxn = 100; const int INF = 1e9; struct Edge { int from, to, cap, flow, cost; Edge(){} Edge(int a, int b, int c, int d, int e) : from(a), to(b), cap(c), flow(d), cost(e){} }; struct MCMF { int n, m, s, t; vector<Edge> edges; vector<int> G[maxn]; bool inq[maxn]; int d[maxn], p[maxn], a[maxn]; void init(int n) { this->n = n; REP(i, n) G[i].clear(); edges.clear(); } void AddEdge(int from, int to, int cap, int cost) { Edge e1 = Edge(from, to, cap, 0, cost); Edge e2 = Edge(to, from, 0, 0, -cost); edges.PB(e1); edges.PB(e2); m = edges.size(); G[from].PB(m-2); G[to].PB(m-1); } bool spfa(int s, int t, int& flow, int& cost) { REP(i, t+1) d[i] = INF; CLR(inq, 0); d[s] = 0; p[s] = 0; a[s] = INF; queue<int> q; q.push(s); while(!q.empty()) { int u = q.front(); q.pop(); inq[u] = false; REP(i, G[u].size()) { Edge& e = edges[G[u][i]]; if(e.cap > e.flow && d[e.to] > d[u] + e.cost) { d[e.to] = d[u] + e.cost; p[e.to] = G[u][i]; a[e.to] = min(a[u], e.cap - e.flow); if(!inq[e.to]) { q.push(e.to); inq[e.to] = true; } } } } if(d[t] == INF) return false; flow += a[t]; cost += d[t] * a[t]; int u = t; while(u != s) { edges[p[u]].flow += a[t]; edges[p[u]^1].flow -= a[t]; u = edges[p[u]].from; } return true; } int Mincost(int s, int t, int& flow, int& cost) { flow = cost = 0; while(spfa(s, t, flow, cost)); return cost; } }solver; int T, n, m, k; int main() { scanf("%d", &T); while(T--) { scanf("%d%d%d", &n, &m, &k); int s = 0, t = n * 2 + 1; solver.init(t+1); FF(i, 1, n+1) { solver.AddEdge(s, i, k, 0); solver.AddEdge(i+n, t, k, 0); } REP(i, m) { int f, t, d; scanf("%d%d%d", &f, &t, &d); solver.AddEdge(f+1, t+1+n, 1, d); } int flow, cost; cost = solver.Mincost(s, t, flow, cost); if(flow == k*n) printf("%d\n", cost); else puts("-1"); } return 0; }