coreNLP的使用

最近考虑做些英文词语词干化的工作,听说coreNLP这个工具不错,就拿来用了。

coreNLP是斯坦福大学开发的一套关于自然语言处理的工具(toolbox),使用简单功能强大,有;命名实体识别、词性标注、词语词干化、语句语法树的构造还有指代关系等功能,使用起来比较方便。

coreNLP是使用Java编写的,运行环境需要在JDK1.8,1.7貌似都不支持。这是需要注意的

 

coreNLP官方文档不多,但是给的几个示例文件也差不多能摸索出来怎么用,刚才摸索了一下,觉得还挺顺手的。

 

环境:

window7 64位

JDK1.8

 

需要引进的ar包:


coreNLP的使用_第1张图片

说明:这里只是测试了英文的,所以使用的Stanford-corenlp-3.6.0.models.jar文件,如果使用中文的需要在官网上下对应中文的model jar包,然后引进项目即可。

 

直接看代码比较简单:

package com.luchi.corenlp;

import java.util.List;
import java.util.Map;
import java.util.Properties;

import edu.stanford.nlp.hcoref.CorefCoreAnnotations.CorefChainAnnotation;
import edu.stanford.nlp.hcoref.data.CorefChain;
import edu.stanford.nlp.ling.CoreAnnotations;
import edu.stanford.nlp.ling.CoreAnnotations.LemmaAnnotation;
import edu.stanford.nlp.ling.CoreAnnotations.NamedEntityTagAnnotation;
import edu.stanford.nlp.ling.CoreAnnotations.PartOfSpeechAnnotation;
import edu.stanford.nlp.ling.CoreAnnotations.SentencesAnnotation;
import edu.stanford.nlp.ling.CoreAnnotations.TextAnnotation;
import edu.stanford.nlp.ling.CoreAnnotations.TokensAnnotation;
import edu.stanford.nlp.ling.CoreLabel;
import edu.stanford.nlp.pipeline.Annotation;
import edu.stanford.nlp.pipeline.StanfordCoreNLP;
import edu.stanford.nlp.semgraph.SemanticGraph;
import edu.stanford.nlp.semgraph.SemanticGraphCoreAnnotations;
import edu.stanford.nlp.trees.Tree;
import edu.stanford.nlp.trees.TreeCoreAnnotations.TreeAnnotation;
import edu.stanford.nlp.util.CoreMap;

public class TestNLP {
	
	public void test(){
		//构造一个StanfordCoreNLP对象,配置NLP的功能,如lemma是词干化,ner是命名实体识别等
		Properties props = new Properties();
		props.setProperty("annotators", "tokenize, ssplit, pos, lemma, ner, parse, dcoref");
		StanfordCoreNLP pipeline = new StanfordCoreNLP(props);

		// 待处理字符串
		String text = "judy has been to china . she likes people there . and she went to Beijing ";// Add your text here!

		// 创造一个空的Annotation对象
		Annotation document = new Annotation(text);

		// 对文本进行分析
		pipeline.annotate(document);
		
		//获取文本处理结果
		List<CoreMap> sentences = document.get(SentencesAnnotation.class);
		for(CoreMap sentence: sentences) {
			  // traversing the words in the current sentence
			  // a CoreLabel is a CoreMap with additional token-specific methods
			  for (CoreLabel token: sentence.get(TokensAnnotation.class)) {
			    // 获取句子的token(可以是作为分词后的词语)
			    String word = token.get(TextAnnotation.class);
			    System.out.println(word);
			    //词性标注
			    String pos = token.get(PartOfSpeechAnnotation.class);
			    System.out.println(pos);
			    // 命名实体识别
			    String ne = token.get(NamedEntityTagAnnotation.class);
			    System.out.println(ne);
			    //词干化处理
			    String lema=token.get(LemmaAnnotation.class);
			    System.out.println(lema);
			  }

			  // 句子的解析树
			  Tree tree = sentence.get(TreeAnnotation.class);
			  tree.pennPrint();

			 // 句子的依赖图
			  SemanticGraph graph = sentence.get(SemanticGraphCoreAnnotations.CollapsedCCProcessedDependenciesAnnotation.class);
		      System.out.println(graph.toString(SemanticGraph.OutputFormat.LIST));
		      
			  
			}

			// 指代词链
			//每条链保存指代的集合
			// 句子和偏移量都从1开始
			Map<Integer, CorefChain> corefChains =  document.get(CorefChainAnnotation.class);
			if (corefChains == null) { return; }
		      for (Map.Entry<Integer,CorefChain> entry: corefChains.entrySet()) {
		        System.out.println("Chain " + entry.getKey() + " ");
		        for (CorefChain.CorefMention m : entry.getValue().getMentionsInTextualOrder()) {
		          // We need to subtract one since the indices count from 1 but the Lists start from 0
		          List<CoreLabel> tokens = sentences.get(m.sentNum - 1).get(CoreAnnotations.TokensAnnotation.class);
		          // We subtract two for end: one for 0-based indexing, and one because we want last token of mention not one following.
		          System. out.println("  " + m + ", i.e., 0-based character offsets [" + tokens.get(m.startIndex - 1).beginPosition() +
		                  ", " + tokens.get(m.endIndex - 2).endPosition() + ")");
		        }
		      }
	}
	public static void main(String[]args){
		TestNLP nlp=new TestNLP();
		nlp.test();
	}

}

 具体的注释都给出来了,我们可以直接看结果就知道代码的作用了:

对于每个token的识别结果:


coreNLP的使用_第2张图片


  

原句中的:

        judy 识别结果为:词性为NN,也就是名词,命名实体对象识别结果为O,词干识别为Judy

        注意到has识别的词干已经被识别出来了,是“have”

        而Beijing的命名实体标注识别结果为“Location”,也就意味着识别出了地名

 

然后我们看 解析树的识别(以第一句为例):


coreNLP的使用_第3张图片
 

最后我们看一下指代的识别:


coreNLP的使用_第4张图片
每个chain包含的是指代相同内容的词语,如chain1中两个she虽然在句子的不同位置,但是都指代的是第一句的“Judy”,这和原文的意思一致,表示识别正确,offsets表示的是该词语在句子中的位置

 

 当然我只是用到了coreNLP的词干化功能,所以只需要把上面代码一改就可以处理词干化了,测试代码如下:

package com.luchi.corenlp;

import java.util.List;
import java.util.Properties;

import edu.stanford.nlp.ling.CoreLabel;
import edu.stanford.nlp.ling.CoreAnnotations.LemmaAnnotation;
import edu.stanford.nlp.ling.CoreAnnotations.SentencesAnnotation;
import edu.stanford.nlp.ling.CoreAnnotations.TokensAnnotation;
import edu.stanford.nlp.pipeline.Annotation;
import edu.stanford.nlp.pipeline.StanfordCoreNLP;

import edu.stanford.nlp.util.CoreMap;

public class Lemma {

	// 词干化
	public String stemmed(String inputStr) {
		Properties props = new Properties();
		props.setProperty("annotators", "tokenize, ssplit, pos, lemma, ner, parse, dcoref");
		StanfordCoreNLP pipeline = new StanfordCoreNLP(props);

		Annotation document = new Annotation(inputStr);
		pipeline.annotate(document);
		List<CoreMap> sentences = document.get(SentencesAnnotation.class);

		String outputStr = "";
		for (CoreMap sentence : sentences) {
			// traversing the words in the current sentence
			// a CoreLabel is a CoreMap with additional token-specific methods
			for (CoreLabel token : sentence.get(TokensAnnotation.class)) {
				String lema = token.get(LemmaAnnotation.class);
				outputStr += lema+" ";
			}

		}
		return outputStr;
	}
	public static void main(String[]args){
		
		Lemma lemma=new Lemma();
		String input="jack had been to china there months ago. he likes china very much,and he is falling love with this country";
		String output=lemma.stemmed(input);
		System.out.print("原句    :");
		System.out.println(input);
		System.out.print("词干化:");
		System.out.println(output);
				
		
	}

}

 输出结果为:

 

 结果还是很准确的




你可能感兴趣的:(自然语言处理,coreNLP)