- 深度学习详解:通过案例了解机器学习基础
beist
深度学习机器学习人工智能
引言机器学习(MachineLearning,ML)和深度学习(DeepLearning,DL)是现代人工智能领域中的两个重要概念。通过让机器具备学习的能力,机器可以从数据中自动找到函数,并应用于各种任务,如语音识别、图像识别和游戏对战等。在这篇笔记中,我们将通过一个简单的案例,逐步了解机器学习的基础知识。1.1机器学习案例学习1.1.1回归问题与分类问题在机器学习中,根据所要解决的问题类型,任务
- 对话云蝠智能:大模型如何让企业呼叫系统从 “成本中心” 变身 “价值枢纽”?
MARS_AI_
人工智能自然语言处理信息与通信交互
在人工智能重塑企业服务的浪潮中,云蝠智能(南京星蝠科技有限公司旗下品牌)以深厚的技术积累和行业实践,逐步成长为国内智能外呼领域的标杆企业。其发展路径揭示了技术自主创新与场景深度结合的必然性。一、技术架构:全栈自研奠定领先基础云蝠智能的核心竞争力源于其全链路自研技术体系。该架构覆盖语音识别(ASR)、自然语言处理(NLP)、语音合成(TTS)及软交换六大层级,实现从基础设施到操作层的闭环设计。这一分
- 【软件系统架构】系列四:嵌入式软件-NPU(神经网络处理器)系统及模板
目录一、什么是NPU?二、NPU与CPU/GPU/DSP对比三、NPU的工作原理核心结构:数据流架构:四、NPU芯片架构(简化图)五、NPU的优势六、NPU应用场景视觉识别语音识别自动驾驶智能监控AIoT设备七、主流NPU芯片/架构实例八、开发者工具生态(通用)九、NPU集成建议(嵌入式开发场景)十、NPU芯片选型对比+模型部署流程+嵌入式工程模板1.主流NPU芯片选型对比表2.模型部署流程(以T
- DIY语音控制车辆玩具全攻略:从硬件组装到功能实现
欧阳天羲
硬件工程语音识别自动驾驶
一、设备清单与成本估算1.1硬件组件列表组件名称价格(元)备注ArduinoUno兼容板7.04控制核心,支持多传感器接入DFRobot离线语音识别模块105支持10条自定义语音指令L298N电机驱动板5双路电机驱动,带散热片直流减速电机×2(JGB37-520)3012V供电,150转/分钟SG90微型舵机5控制前轮转向HC-SR04超声波传感器2.45测距范围2-400cm18650锂电池(3
- GRU与Transformer结合:新一代序列模型
AI大模型应用工坊
grutransformer深度学习ai
GRU与Transformer结合:新一代序列模型关键词:GRU、Transformer、序列模型、结合、深度学习摘要:本文深入探讨了GRU与Transformer结合所形成的新一代序列模型。先介绍了GRU和Transformer各自的核心概念及工作原理,然后阐述了二者结合的原因、方式和优势。通过代码实际案例展示了如何搭建结合的模型,还探讨了其在自然语言处理、语音识别等领域的实际应用场景。最后对未
- 数字人分身系统源码搭建定制化开发,支持OEM
在人工智能技术蓬勃发展的今天,数字人分身系统凭借其独特的交互性和广泛的应用场景,成为了众多企业和开发者关注的焦点。从虚拟主播、智能客服到数字员工,数字人分身系统正逐渐渗透到各个领域。本文将详细阐述数字人分身系统源码搭建与定制化开发的全流程,为技术爱好者和企业开发者提供全面的技术参考。一、数字人分身系统概述数字人分身系统是一个综合性的技术解决方案,它融合了计算机图形学、人工智能、语音识别与合成、自然
- 【造工具-2】用SenceVoice,实现本地的语音转文本小工具
zhulangfly
AIAISTTASR
说到语音转文本,有两种说法,自动语音识别(ASR,AutomaticSpeechRecognition)和语音转文本(STT,Speech-to-Text),本质上都是通过算法将语音信号转化为可处理的文本形式的技术,两者的核心功能和应用目标完全一致。如果有区别的话,ASR更常见于学术研究和技术文档中,STT则更多应用于产品功能描述。ASR常与其他模块(如VAD、说话人分离)并列描述,体现其在技
- 华为Pura 70怎么语音翻译?语音翻译详解
C_19870
华为经验分享
在智能手机功能日益丰富的今天,语音翻译已成为许多手机用户的重要需求之一。华为Pura70,作为华为系列中的一款高端机型,其内置的语音翻译功能在准确性和便捷性上都表现出色。本文将详细介绍华为Pura70在语音翻译方面的表现、操作步骤,并探讨其他可实现语音翻译操作的软件,特别是“同声传译王”。华为Pura70手机在语音翻译时的表现华为Pura70内置的语音翻译功能凭借其先进的语音识别和翻译技术,为用户
- RNN、LSTM、GRU详解
昔颜1121
人工智能rnnpython
RNN、LSTM、GRU详解在深度学习领域,序列数据(如语音识别、机器翻译、文本生成等)广泛应用于自然语言处理(NLP)、时间序列预测、语音和视频处理等任务中。针对序列数据,循环神经网络(RNN,RecurrentNeuralNetwork)及其改进版本——长短时记忆网络(LSTM,LongShort-TermMemory)和门控循环单元(GRU,GatedRecurrentUnit)成为处理时序
- 利用FunASR搭建自己的语音转文本服务器(有手就行)
提示:利用阿里巴巴开源的FunASR工具包,搭建语音转文本服务,通过网页实现免费的语音转文本服务。目录前言一、FunASR是什么?二、服务搭建2.1服务器准备2.2安装docker2.3下载并启动镜像2.4启动ASR服务三、下载客户端开始工作总结前言语音转文本是我们经常面对的日常任务,都=是智能客服、会议记录、实时字幕等场景核心的功能。然而,传统语音识别系统往往面临高延迟、低准确率或复杂部署的挑战
- 【使用Unimrcp和Funasr构建呼叫中心语音识别服务端】
cc_ai_cn
呼叫中心语音识别语音识别人工智能
使用Unimrcp和Funasr构建呼叫中心语音识别服务端1.编译及运行unimrcp2.新增funasr-recog,支持funasr识别3.启动unimrcp4.启动funasr5.freeswitch呼叫测试1.编译及运行unimrcp此次使用的是unimrcp1.6版本,先下载unimrcp-deps-1.6.0以及unimrcp-1.6.0进行构建,此处不过多赘述。2.新增funasr-
- 第9章:听声辨味的玄机——语音识别如何破解厨房噪音难题
第9章:听声辨味的玄机——语音识别如何破解厨房噪音难题声学特征解析、深度降噪与工业部署全链路解密工业级挑战场景:在上海四季酒店中央厨房的热浪区域(平均声压92dB),行政主厨需同时管理六口燃气灶、两台对流烤箱和三台洗碗机。当他在油烟机轰鸣中喊出"三号灶文火收汁"时,噪音包含:炒锅爆炒声(65-85dB@4-8kHz)高压蒸汽喷射(75-90dB@2-4kHz)金属撞击噪声(80-95dB@1-8k
- 世界因你不同:李开复自传
浦东新村轱天乐
读书笔记职场发展
读完后闭上眼睛想一想,为什么李开复值得学习?第一,他工作能力很强。他并不只是在名校、名企呆过,而是最后都做到了很高的位置。11岁从台湾去美国读书,博士在CMU,毕业后先后在苹果、微软、谷歌工作过。CMU读博期间开发了基于统计方法的语音识别技术,拿到了CMU终身教职后,放弃这一职位加入了苹果。微软时期牵头成立了微软中国研究院(后改名微软亚洲研究院),这个传奇的地方在深度学习大火之后,诞生出了很多牛人
- 开发者注意:鸿蒙APP语音识别常见问题全解析(含可跑Demo)
harmonyos
摘要在鸿蒙(HarmonyOS)应用开发中,语音识别是很多智能功能的核心入口,比如语音助手、语音输入、语音搜索等。但不少开发者会遇到"语音识别无法使用"的问题:调用没反应、识别不返回、报权限错误……这篇文章将从权限配置、API调用、设备支持、网络状态等多个角度入手,结合实际代码和典型使用场景,帮你一条一条查清楚到底问题出在哪。引言随着语音交互逐渐成为主流,鸿蒙系统也提供了对ASR(Automati
- 开源(离线)中文语音识别ASR(语音转文本)工具整理
切糕师学AI
#语音识别asr与语音合成STT语音识别人工智能深度学习
开源(离线)中文语音识别ASR(语音转文本)工具整理目录文章目录目录@[toc]openai的开源工具:whisperwhisper介绍引用ASRT语音识别项目ASRT介绍引用微软语音服务(付费)微软语音服务介绍实时语音转文本批量转录自定义语音引用PaddleSpeechPaddleSpeech介绍引用openai的开源工具:whisperwhisper介绍OpenAI在2022年9月21日开源了
- HarmonyOS SDK:Image Classification 能力进行图片识别
在鸿蒙应用开发中,HarmonyOSSDK提供了丰富的AI能力接口,开发者可以快速集成语音识别、图像识别、自然语言处理等智能功能到自己的应用中。作为一名鸿蒙开发者,在实际项目中我深刻体会到这些AI能力对提升用户体验和产品智能化水平的重要性。以图像识别为例,借助HarmonyOSSDK中的ImageClassificationAPI,我们可以轻松实现图片内容的自动识别与分类。通过调用系统提供的AI引
- 《Whisper模型版本及下载链接》
空云风语
人工智能深度学习神经网络whisper
Whisper模型版本及下载链接Whisper是OpenAI开发的语音识别模型,以下按模型规模从小到大排列,包含不同语言版本及通用版本:1.Tiny系列(轻量级)tiny.en.pt(英文专用):https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d
- 《Whisper:开启语音识别新时代的钥匙》
空云风语
人工智能深度学习神经网络whisper语音识别人工智能
Whisper模型:技术革新的基石在当今科技飞速发展的时代,自动语音识别(ASR)技术作为人工智能领域的关键分支,正深刻地改变着人们的生活与工作方式。从智能语音助手到实时字幕生成,从语音交互设备到智能客服系统,ASR技术无处不在,为人们带来了前所未有的便利与效率提升。而Whisper模型,作为ASR技术中的一颗璀璨明星,以其卓越的性能和独特的技术架构,成为了推动语音识别技术发展的重要力量。Whis
- 用Google Cloud Speech-to-Text API进行音频转录
huluwaqimotuo
音视频
###技术背景介绍随着人工智能技术的不断发展,语音识别已成为我们生活中不可或缺的一部分。GoogleCloudSpeech-to-TextAPI是其中的佼佼者,能够从音频文件中提取文本信息,减少人工转录的麻烦。这篇文章将指导你如何使用`GoogleSpeechToTextLoader`来加载和转录音频文件。###核心原理解析`GoogleSpeechToTextLoader`是一个工具,它通过调用
- 微服务及时通讯系统-服务端-开发阶段与功能介绍
C++忠实粉丝
微服务及时通讯系统-后台服务器实现微服务架构云原生
个人主页:C++忠实粉丝欢迎点赞收藏✨留言✉加关注本文由C++忠实粉丝原创微服务及时通讯系统-服务端-开发阶段与功能介绍收录于专栏[微服务及时通讯系统-后台服务器实现]目录开发阶段与功能介绍聊天室后台服务器实现:功能需求确定阶段:框架设计:聊天室子服务拆分:消息转发子服务:消息存储子服务:语音识别子服务:文件管理子服务:宝子们!!!我又开始新的专栏啦~这一次你们可以跟着我一步一步完成这个开源项目!
- [特殊字符] 一键搭建AI语音助理:基于DashScope+GRadio的智能聊天机器人技术全解
来自于狂人
人工智能机器人
一、项目核心技术架构(图1)交互层核心模块pyaudio实时采集流式响应PCM编码GRadio界面状态控制实时对话展示语音输出历史记录管理ASR回调类ASR语音识别聊天处理引擎GPT大模型处理语音合成回调TTS语音合成语音输入DashScopeAPI二、四大核心技术实现1.智能语音识别引擎(附关键源码注释)classASRCallback(TranslationRecognizerCallback
- 华小妹 AI 数字人又来添新功能,突破语言边界
广州华锐视点
人工智能
华小妹AI数字人功能强大,不是徒有其表的花瓶。作为一款极具创新性的AI数字人,华小妹AI数字人擅长跳舞,能精准介绍产品,可通过虚拟场景带客户参观各类场所,还能用丰富肢体语言交流,具备空间定位能力,语音识别技术先进,能精准识别各种语音指令。如今华小妹AI数字人上新了支持多语言交流的功能,涵盖常见和小众语言,打破语言障碍,拓展了应用场景和服务范围。华小妹AI数字人上新的多语言交流功能堪称一大亮点,支持
- AI 大模型原理与应用:大模型训练突破万张卡和万亿参数 MOE 这两个临界点
AI大模型应用之禅
人工智能
AI大模型原理与应用:大模型训练突破万张卡和万亿参数MOE这两个临界点大模型、训练、万张卡、万亿参数、MOE、Transformer、深度学习、自然语言处理1.背景介绍近年来,深度学习技术取得了飞速发展,大规模人工智能模型的训练成为一个重要的研究方向。大模型是指参数量达到数十亿甚至万亿级别的人工智能模型,它们在自然语言处理、计算机视觉、语音识别等领域展现出强大的能力。然而,大模型的训练也面临着巨大
- 基于Transformer的语音识别模型:从理论到实现
AI智能探索者
transformer语音识别深度学习ai
基于Transformer的语音识别模型:从理论到实现关键词:Transformer、语音识别、注意力机制、序列建模、端到端学习、自注意力、语音特征提取摘要:本文将深入探讨基于Transformer架构的语音识别系统。从传统的语音识别方法出发,我们将一步步解析Transformer如何革新语音识别领域,详细讲解其核心原理、架构设计和实现细节。通过理论讲解、数学推导和代码实践相结合的方式,帮助读者全
- 自然语言处理之文本分类:Transformer:文本分类数据集分析
zhubeibei168
自然语言处理自然语言处理分类transformer数据挖掘人工智能支持向量机
自然语言处理之文本分类:Transformer:文本分类数据集分析自然语言处理基础NLP概述自然语言处理(NaturalLanguageProcessing,NLP)是人工智能领域的一个重要分支,专注于使计算机能够理解、解释和生成人类语言。NLP技术广泛应用于文本分类、情感分析、机器翻译、问答系统、语音识别等场景。其核心挑战在于理解语言的复杂性和多义性,以及处理大
- 2025年开源AI模型综合对比与推荐
目录2025年开源AI模型综合对比与推荐引言文本生成模型简介对比表格评价图像生成模型简介对比表格评价视频生成模型简介对比表格评价语音识别模型简介对比表格评价语音合成模型简介对比表格评价总结参考文献2025年开源AI模型综合对比与推荐引言人工智能(AI)技术在2025年继续蓬勃发展,开源AI模型在文本生成、图像生成、视频生成、语音识别和语音合成等领域展现出卓越的性能。这些模型不仅在技术上与专有模型不
- 循环神经网络RNN
Xyz_Overlord
rnn深度学习人工智能
一、循环神经网络概念以及应用场景1.概念处理序列的一种神经网络计算模型。2.序列数据数据是根据时间步生成的,前后数据有关联关系,数据可以是数字、文字序列等等。3.应用场景自然语言处理(NLP)、时间序列预测、语音识别、音乐生成......4.自然语言处理概述主要是通过计算机算法来理解自然语言。NLP涵盖了从文本到语音、从语音到文本的各个方面,它涉及多种技术,包括语法分析、语义理解、情感分析、机器翻
- 使用Xinference与LangChain实现强大的模型推理
yunwu12777
langchain
技术背景介绍随着深度学习和机器学习技术的快速发展,如何有效地管理和部署大型语言模型(LLM)成为了一项重要课题。Xinference是一款强大的推理库,它能够无缝地为LLMs、语音识别模型以及多模态模型提供服务。基于XorbitsInference技术,用户可以通过简单的命令来快速部署和服务这些模型,无论是在本地机器还是在分布式集群中。核心原理解析Xinference的设计目标是降低使用复杂模型的
- 基于Python的LSTM循环神经网络模型实战
缑宇澄
python
在处理具有时间序列特性的数据时,传统神经网络往往难以捕捉数据间的时序依赖关系。而循环神经网络(RecurrentNeuralNetwork,RNN)及其变体——长短期记忆网络(LongShort-TermMemory,LSTM),凭借独特的记忆机制,能够有效处理序列数据,在语音识别、自然语言处理、股票价格预测等领域展现出强大的优势。本文将深入解析LSTM的原理,并通过Python代码进行实战,展示
- 鸿蒙AI语音翻译便签应用设计与实现
鸿蒙大白
uiArKUI-Xwpf物联网HarmonyOS5仓颉
鸿蒙AI语音翻译便签应用设计与实现一、系统架构设计基于HarmonyOS的AI能力和分布式技术,我们设计了一个语音翻译便签应用,能够实时将语音输入转换为文字并进行翻译,最终生成多语言便签,支持跨设备同步。https://example.com/ai-voice-translator-arch.png系统包含三个核心模块:语音识别模块-使用@ohos.multimedia.audio和AI语音识别服
- iOS http封装
374016526
ios服务器交互http网络请求
程序开发避免不了与服务器的交互,这里打包了一个自己写的http交互库。希望可以帮到大家。
内置一个basehttp,当我们创建自己的service可以继承实现。
KuroAppBaseHttp *baseHttp = [[KuroAppBaseHttp alloc] init];
[baseHttp setDelegate:self];
[baseHttp
- lolcat :一个在 Linux 终端中输出彩虹特效的命令行工具
brotherlamp
linuxlinux教程linux视频linux自学linux资料
那些相信 Linux 命令行是单调无聊且没有任何乐趣的人们,你们错了,这里有一些有关 Linux 的文章,它们展示着 Linux 是如何的有趣和“淘气” 。
在本文中,我将讨论一个名为“lolcat”的小工具 – 它可以在终端中生成彩虹般的颜色。
何为 lolcat ?
Lolcat 是一个针对 Linux,BSD 和 OSX 平台的工具,它类似于 cat 命令,并为 cat
- MongoDB索引管理(1)——[九]
eksliang
mongodbMongoDB管理索引
转载请出自出处:http://eksliang.iteye.com/blog/2178427 一、概述
数据库的索引与书籍的索引类似,有了索引就不需要翻转整本书。数据库的索引跟这个原理一样,首先在索引中找,在索引中找到条目以后,就可以直接跳转到目标文档的位置,从而使查询速度提高几个数据量级。
不使用索引的查询称
- Informatica参数及变量
18289753290
Informatica参数变量
下面是本人通俗的理解,如有不对之处,希望指正 info参数的设置:在info中用到的参数都在server的专门的配置文件中(最好以parma)结尾 下面的GLOBAl就是全局的,$开头的是系统级变量,$$开头的变量是自定义变量。如果是在session中或者mapping中用到的变量就是局部变量,那就把global换成对应的session或者mapping名字。
[GLOBAL] $Par
- python 解析unicode字符串为utf8编码字符串
酷的飞上天空
unicode
php返回的json字符串如果包含中文,则会被转换成\uxx格式的unicode编码字符串返回。
在浏览器中能正常识别这种编码,但是后台程序却不能识别,直接输出显示的是\uxx的字符,并未进行转码。
转换方式如下
>>> import json
>>> q = '{"text":"\u4
- Hibernate的总结
永夜-极光
Hibernate
1.hibernate的作用,简化对数据库的编码,使开发人员不必再与复杂的sql语句打交道
做项目大部分都需要用JAVA来链接数据库,比如你要做一个会员注册的 页面,那么 获取到用户填写的 基本信后,你要把这些基本信息存入数据库对应的表中,不用hibernate还有mybatis之类的框架,都不用的话就得用JDBC,也就是JAVA自己的,用这个东西你要写很多的代码,比如保存注册信
- SyntaxError: Non-UTF-8 code starting with '\xc4'
随便小屋
python
刚开始看一下Python语言,传说听强大的,但我感觉还是没Java强吧!
写Hello World的时候就遇到一个问题,在Eclipse中写的,代码如下
'''
Created on 2014年10月27日
@author: Logic
'''
print("Hello World!");
运行结果
SyntaxError: Non-UTF-8
- 学会敬酒礼仪 不做酒席菜鸟
aijuans
菜鸟
俗话说,酒是越喝越厚,但在酒桌上也有很多学问讲究,以下总结了一些酒桌上的你不得不注意的小细节。
细节一:领导相互喝完才轮到自己敬酒。敬酒一定要站起来,双手举杯。
细节二:可以多人敬一人,决不可一人敬多人,除非你是领导。
细节三:自己敬别人,如果不碰杯,自己喝多少可视乎情况而定,比如对方酒量,对方喝酒态度,切不可比对方喝得少,要知道是自己敬人。
细节四:自己敬别人,如果碰杯,一
- 《创新者的基因》读书笔记
aoyouzi
读书笔记《创新者的基因》
创新者的基因
创新者的“基因”,即最具创意的企业家具备的五种“发现技能”:联想,观察,实验,发问,建立人脉。
第一部分破坏性创新,从你开始
第一章破坏性创新者的基因
如何获得启示:
发现以下的因素起到了催化剂的作用:(1) -个挑战现状的问题;(2)对某项技术、某个公司或顾客的观察;(3) -次尝试新鲜事物的经验或实验;(4)与某人进行了一次交谈,为他点醒
- 表单验证技术
百合不是茶
JavaScriptDOM对象String对象事件
js最主要的功能就是验证表单,下面是我对表单验证的一些理解,贴出来与大家交流交流 ,数显我们要知道表单验证需要的技术点, String对象,事件,函数
一:String对象;通常是对字符串的操作;
1,String的属性;
字符串.length;表示该字符串的长度;
var str= "java"
- web.xml配置详解之context-param
bijian1013
javaservletweb.xmlcontext-param
一.格式定义:
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>contextConfigLocationValue></param-value>
</context-param>
作用:该元
- Web系统常见编码漏洞(开发工程师知晓)
Bill_chen
sqlPHPWebfckeditor脚本
1.头号大敌:SQL Injection
原因:程序中对用户输入检查不严格,用户可以提交一段数据库查询代码,根据程序返回的结果,
获得某些他想得知的数据,这就是所谓的SQL Injection,即SQL注入。
本质:
对于输入检查不充分,导致SQL语句将用户提交的非法数据当作语句的一部分来执行。
示例:
String query = "SELECT id FROM users
- 【MongoDB学习笔记六】MongoDB修改器
bit1129
mongodb
本文首先介绍下MongoDB的基本的增删改查操作,然后,详细介绍MongoDB提供的修改器,以完成各种各样的文档更新操作 MongoDB的主要操作
show dbs 显示当前用户能看到哪些数据库
use foobar 将数据库切换到foobar
show collections 显示当前数据库有哪些集合
db.people.update,update不带参数,可
- 提高职业素养,做好人生规划
白糖_
人生
培训讲师是成都著名的企业培训讲师,他在讲课中提出的一些观点很新颖,在此我收录了一些分享一下。注:讲师的观点不代表本人的观点,这些东西大家自己揣摩。
1、什么是职业规划:职业规划并不完全代表你到什么阶段要当什么官要拿多少钱,这些都只是梦想。职业规划是清楚的认识自己现在缺什么,这个阶段该学习什么,下个阶段缺什么,又应该怎么去规划学习,这样才算是规划。
- 国外的网站你都到哪边看?
bozch
技术网站国外
学习软件开发技术,如果没有什么英文基础,最好还是看国内的一些技术网站,例如:开源OSchina,csdn,iteye,51cto等等。
个人感觉如果英语基础能力不错的话,可以浏览国外的网站来进行软件技术基础的学习,例如java开发中常用的到的网站有apache.org 里面有apache的很多Projects,springframework.org是spring相关的项目网站,还有几个感觉不错的
- 编程之美-光影切割问题
bylijinnan
编程之美
package a;
public class DisorderCount {
/**《编程之美》“光影切割问题”
* 主要是两个问题:
* 1.数学公式(设定没有三条以上的直线交于同一点):
* 两条直线最多一个交点,将平面分成了4个区域;
* 三条直线最多三个交点,将平面分成了7个区域;
* 可以推出:N条直线 M个交点,区域数为N+M+1。
- 关于Web跨站执行脚本概念
chenbowen00
Web安全跨站执行脚本
跨站脚本攻击(XSS)是web应用程序中最危险和最常见的安全漏洞之一。安全研究人员发现这个漏洞在最受欢迎的网站,包括谷歌、Facebook、亚马逊、PayPal,和许多其他网站。如果你看看bug赏金计划,大多数报告的问题属于 XSS。为了防止跨站脚本攻击,浏览器也有自己的过滤器,但安全研究人员总是想方设法绕过这些过滤器。这个漏洞是通常用于执行cookie窃取、恶意软件传播,会话劫持,恶意重定向。在
- [开源项目与投资]投资开源项目之前需要统计该项目已有的用户数
comsci
开源项目
现在国内和国外,特别是美国那边,突然出现很多开源项目,但是这些项目的用户有多少,有多少忠诚的粉丝,对于投资者来讲,完全是一个未知数,那么要投资开源项目,我们投资者必须准确无误的知道该项目的全部情况,包括项目发起人的情况,项目的维持时间..项目的技术水平,项目的参与者的势力,项目投入产出的效益.....
- oracle alert log file(告警日志文件)
daizj
oracle告警日志文件alert log file
The alert log is a chronological log of messages and errors, and includes the following items:
All internal errors (ORA-00600), block corruption errors (ORA-01578), and deadlock errors (ORA-00060)
- 关于 CAS SSO 文章声明
denger
SSO
由于几年前写了几篇 CAS 系列的文章,之后陆续有人参照文章去实现,可都遇到了各种问题,同时经常或多或少的收到不少人的求助。现在这时特此说明几点:
1. 那些文章发表于好几年前了,CAS 已经更新几个很多版本了,由于近年已经没有做该领域方面的事情,所有文章也没有持续更新。
2. 文章只是提供思路,尽管 CAS 版本已经发生变化,但原理和流程仍然一致。最重要的是明白原理,然后
- 初二上学期难记单词
dcj3sjt126com
englishword
lesson 课
traffic 交通
matter 要紧;事物
happy 快乐的,幸福的
second 第二的
idea 主意;想法;意见
mean 意味着
important 重要的,重大的
never 从来,决不
afraid 害怕 的
fifth 第五的
hometown 故乡,家乡
discuss 讨论;议论
east 东方的
agree 同意;赞成
bo
- uicollectionview 纯代码布局, 添加头部视图
dcj3sjt126com
Collection
#import <UIKit/UIKit.h>
@interface myHeadView : UICollectionReusableView
{
UILabel *TitleLable;
}
-(void)setTextTitle;
@end
#import "myHeadView.h"
@implementation m
- N 位随机数字串的 JAVA 生成实现
FX夜归人
javaMath随机数Random
/**
* 功能描述 随机数工具类<br />
* @author FengXueYeGuiRen
* 创建时间 2014-7-25<br />
*/
public class RandomUtil {
// 随机数生成器
private static java.util.Random random = new java.util.R
- Ehcache(09)——缓存Web页面
234390216
ehcache页面缓存
页面缓存
目录
1 SimplePageCachingFilter
1.1 calculateKey
1.2 可配置的初始化参数
1.2.1 cach
- spring中少用的注解@primary解析
jackyrong
primary
这次看下spring中少见的注解@primary注解,例子
@Component
public class MetalSinger implements Singer{
@Override
public String sing(String lyrics) {
return "I am singing with DIO voice
- Java几款性能分析工具的对比
lbwahoo
java
Java几款性能分析工具的对比
摘自:http://my.oschina.net/liux/blog/51800
在给客户的应用程序维护的过程中,我注意到在高负载下的一些性能问题。理论上,增加对应用程序的负载会使性能等比率的下降。然而,我认为性能下降的比率远远高于负载的增加。我也发现,性能可以通过改变应用程序的逻辑来提升,甚至达到极限。为了更详细的了解这一点,我们需要做一些性能
- JVM参数配置大全
nickys
jvm应用服务器
JVM参数配置大全
/usr/local/jdk/bin/java -Dresin.home=/usr/local/resin -server -Xms1800M -Xmx1800M -Xmn300M -Xss512K -XX:PermSize=300M -XX:MaxPermSize=300M -XX:SurvivorRatio=8 -XX:MaxTenuringThreshold=5 -
- 搭建 CentOS 6 服务器(14) - squid、Varnish
rensanning
varnish
(一)squid
安装
# yum install httpd-tools -y
# htpasswd -c -b /etc/squid/passwords squiduser 123456
# yum install squid -y
设置
# cp /etc/squid/squid.conf /etc/squid/squid.conf.bak
# vi /etc/
- Spring缓存注解@Cache使用
tom_seed
spring
参考资料
http://www.ibm.com/developerworks/cn/opensource/os-cn-spring-cache/
http://swiftlet.net/archives/774
缓存注解有以下三个:
@Cacheable @CacheEvict @CachePut
- dom4j解析XML时出现"java.lang.noclassdeffounderror: org/jaxen/jaxenexception"错误
xp9802
java.lang.NoClassDefFoundError: org/jaxen/JaxenExc
关键字: java.lang.noclassdeffounderror: org/jaxen/jaxenexception
使用dom4j解析XML时,要快速获取某个节点的数据,使用XPath是个不错的方法,dom4j的快速手册里也建议使用这种方式
执行时却抛出以下异常:
Exceptio