网上找了一个三维计算几何模版,完善了一下,使它能使用了...
#include <cstdio> #include <cstring> #include <algorithm> using namespace std; /***********基础*************/ const double EPS=0.000001; typedef struct Point_3D { double x, y, z; Point_3D(double xx = 0, double yy = 0, double zz = 0): x(xx), y(yy), z(zz) {} bool operator == (const Point_3D& A) const { return x==A.x && y==A.y && z==A.z; } }Vector_3D; Point_3D read_Point_3D() { double x,y,z; scanf("%lf%lf%lf",&x,&y,&z); return Point_3D(x,y,z); } Vector_3D operator + (const Vector_3D & A, const Vector_3D & B) { return Vector_3D(A.x + B.x, A.y + B.y, A.z + B.z); } Vector_3D operator - (const Point_3D & A, const Point_3D & B) { return Vector_3D(A.x - B.x, A.y - B.y, A.z - B.z); } Vector_3D operator * (const Vector_3D & A, double p) { return Vector_3D(A.x * p, A.y * p, A.z * p); } Vector_3D operator / (const Vector_3D & A, double p) { return Vector_3D(A.x / p, A.y / p, A.z / p); } double Dot(const Vector_3D & A, const Vector_3D & B) { return A.x * B.x + A.y * B.y + A.z * B.z; } double Length(const Vector_3D & A) { return sqrt(Dot(A, A)); } double Angle(const Vector_3D & A, const Vector_3D & B) { return acos(Dot(A, B) / Length(A) / Length(B)); } Vector_3D Cross(const Vector_3D & A, const Vector_3D & B) { return Vector_3D(A.y * B.z - A.z * B.y, A.z * B.x - A.x * B.z, A.x * B.y - A.y * B.x); } double Area2(const Point_3D & A, const Point_3D & B, const Point_3D & C) { return Length(Cross(B - A, C - A)); } double Volume6(const Point_3D & A, const Point_3D & B, const Point_3D & C, const Point_3D & D) { return Dot(D - A, Cross(B - A, C - A)); } // 四面体的重心 Point_3D Centroid(const Point_3D & A, const Point_3D & B, const Point_3D & C, const Point_3D & D) { return (A + B + C + D) / 4.0; } /************点线面*************/ // 点p到平面p0-n的距离。n必须为单位向量 double DistanceToPlane(const Point_3D & p, const Point_3D & p0, const Vector_3D & n) { return fabs(Dot(p - p0, n)); // 如果不取绝对值,得到的是有向距离 } // 点p在平面p0-n上的投影。n必须为单位向量 Point_3D GetPlaneProjection(const Point_3D & p, const Point_3D & p0, const Vector_3D & n) { return p - n * Dot(p - p0, n); } //直线p1-p2 与平面p0-n的交点 Point_3D LinePlaneIntersection(Point_3D p1, Point_3D p2, Point_3D p0, Vector_3D n) { Vector_3D v= p2 - p1; double t = (Dot(n, p0 - p1) / Dot(n, p2 - p1)); //分母为0,直线与平面平行或在平面上 return p1 + v * t; //如果是线段 判断t是否在0~1之间 } // 点P到直线AB的距离 double DistanceToLine(const Point_3D & P, const Point_3D & A, const Point_3D & B) { Vector_3D v1 = B - A, v2 = P - A; return Length(Cross(v1, v2)) / Length(v1); } //点到线段的距离 double DistanceToSeg(Point_3D p, Point_3D a, Point_3D b) { if(a == b) { return Length(p - a); } Vector_3D v1 = b - a, v2 = p - a, v3 = p - b; if(Dot(v1, v2) + EPS < 0) { return Length(v2); } else { if(Dot(v1, v3) - EPS > 0) { return Length(v3); } else { return Length(Cross(v1, v2)) / Length(v1); } } } //求异面直线 p1+s*u与p2+t*v的公垂线对应的s 如果平行|重合,返回false bool LineDistance3D(Point_3D p1, Vector_3D u, Point_3D p2, Vector_3D v, double & s) { double b = Dot(u, u) * Dot(v, v) - Dot(u, v) * Dot(u, v); if(abs(b) <= EPS) { return false; } double a = Dot(u, v) * Dot(v, p1 - p2) - Dot(v, v) * Dot(u, p1 - p2); s = a / b; return true; } // p1和p2是否在线段a-b的同侧 bool SameSide(const Point_3D & p1, const Point_3D & p2, const Point_3D & a, const Point_3D & b) { return Dot(Cross(b - a, p1 - a), Cross(b - a, p2 - a)) - EPS >= 0; } // 点P在三角形P0, P1, P2中 bool PointInTri(const Point_3D & P, const Point_3D & P0, const Point_3D & P1, const Point_3D & P2) { return SameSide(P, P0, P1, P2) && SameSide(P, P1, P0, P2) && SameSide(P, P2, P0, P1); } // 三角形P0P1P2是否和线段AB相交 bool TriSegIntersection(const Point_3D & P0, const Point_3D & P1, const Point_3D & P2, const Point_3D & A, const Point_3D & B, Point_3D & P) { Vector_3D n = Cross(P1 - P0, P2 - P0); if(abs(Dot(n, B - A)) <= EPS) { return false; // 线段A-B和平面P0P1P2平行或共面 } else // 平面A和直线P1-P2有惟一交点 { double t = Dot(n, P0 - A) / Dot(n, B - A); if(t + EPS < 0 || t - 1 - EPS > 0) { return false; // 不在线段AB上 } P = A + (B - A) * t; // 交点 return PointInTri(P, P0, P1, P2); } } //空间两三角形是否相交 bool TriTriIntersection(Point_3D * T1, Point_3D * T2) { Point_3D P; for(int i = 0; i < 3; i++) { if(TriSegIntersection(T1[0], T1[1], T1[2], T2[i], T2[(i + 1) % 3], P)) { return true; } if(TriSegIntersection(T2[0], T2[1], T2[2], T1[i], T1[(i + 1) % 3], P)) { return true; } } return false; } //空间两直线上最近点对 返回最近距离 点对保存在ans1 ans2中 double SegSegDistance(Point_3D a1, Point_3D b1, Point_3D a2, Point_3D b2, Point_3D& ans1, Point_3D& ans2) { Vector_3D v1 = (a1 - b1), v2 = (a2 - b2); Vector_3D N = Cross(v1, v2); Vector_3D ab = (a1 - a2); double ans = Dot(N, ab) / Length(N); Point_3D p1 = a1, p2 = a2; Vector_3D d1 = b1 - a1, d2 = b2 - a2; double t1, t2; t1 = Dot((Cross(p2 - p1, d2)), Cross(d1, d2)); t2 = Dot((Cross(p2 - p1, d1)), Cross(d1, d2)); double dd = Length((Cross(d1, d2))); t1 /= dd * dd; t2 /= dd * dd; ans1 = (a1 + (b1 - a1) * t1); ans2 = (a2 + (b2 - a2) * t2); return fabs(ans); } // 判断P是否在三角形A, B, C中,并且到三条边的距离都至少为mindist。保证P, A, B, C共面 bool InsideWithMinDistance(const Point_3D & P, const Point_3D & A, const Point_3D & B, const Point_3D & C, double mindist) { if(!PointInTri(P, A, B, C)) { return false; } if(DistanceToLine(P, A, B) < mindist) { return false; } if(DistanceToLine(P, B, C) < mindist) { return false; } if(DistanceToLine(P, C, A) < mindist) { return false; } return true; } // 判断P是否在凸四边形ABCD(顺时针或逆时针)中,并且到四条边的距离都至少为mindist。保证P, A, B, C, D共面 bool InsideWithMinDistance(const Point_3D & P, const Point_3D & A, const Point_3D & B, const Point_3D & C, const Point_3D & D, double mindist) { if(!PointInTri(P, A, B, C)) { return false; } if(!PointInTri(P, C, D, A)) { return false; } if(DistanceToLine(P, A, B) < mindist) { return false; } if(DistanceToLine(P, B, C) < mindist) { return false; } if(DistanceToLine(P, C, D) < mindist) { return false; } if(DistanceToLine(P, D, A) < mindist) { return false; } return true; } /*************凸包相关问题*******************/ //加干扰 double rand01() { return rand() / (double)RAND_MAX; } double randeps() { return (rand01() - 0.5) * EPS; } Point_3D add_noise(const Point_3D & p) { return Point_3D(p.x + randeps(), p.y + randeps(), p.z + randeps()); } struct Face { int v[3]; Face(int a, int b, int c) { v[0] = a; v[1] = b; v[2] = c; } Vector_3D Normal(const vector<Point_3D> & P) const { return Cross(P[v[1]] - P[v[0]], P[v[2]] - P[v[0]]); } // f是否能看见P[i] int CanSee(const vector<Point_3D> & P, int i) const { return Dot(P[i] - P[v[0]], Normal(P)) > 0; } }; // 增量法求三维凸包 // 注意:没有考虑各种特殊情况(如四点共面)。实践中,请在调用前对输入点进行微小扰动 vector<Face> CH3D(const vector<Point_3D> & P) { int n = P.size(); vector<vector<int> > vis(n); for(int i = 0; i < n; i++) { vis[i].resize(n); } vector<Face> cur; cur.push_back(Face(0, 1, 2)); // 由于已经进行扰动,前三个点不共线 cur.push_back(Face(2, 1, 0)); for(int i = 3; i < n; i++) { vector<Face> next; // 计算每条边的“左面”的可见性 for(int j = 0; j < cur.size(); j++) { Face & f = cur[j]; int res = f.CanSee(P, i); if(!res) { next.push_back(f); } for(int k = 0; k < 3; k++) { vis[f.v[k]][f.v[(k + 1) % 3]] = res; } } for(int j = 0; j < cur.size(); j++) for(int k = 0; k < 3; k++) { int a = cur[j].v[k], b = cur[j].v[(k + 1) % 3]; if(vis[a][b] != vis[b][a] && vis[a][b]) // (a,b)是分界线,左边对P[i]可见 { next.push_back(Face(a, b, i)); } } cur = next; } return cur; } struct ConvexPolyhedron { int n; vector<Point_3D> P, P2; vector<Face> faces; bool read() { if(scanf("%d", &n) != 1) { return false; } P.resize(n); P2.resize(n); for(int i = 0; i < n; i++) { P[i] = read_Point_3D(); P2[i] = add_noise(P[i]); } faces = CH3D(P2); return true; } //三维凸包重心 Point_3D centroid() { Point_3D C = P[0]; double totv = 0; Point_3D tot(0, 0, 0); for(int i = 0; i < faces.size(); i++) { Point_3D p1 = P[faces[i].v[0]], p2 = P[faces[i].v[1]], p3 = P[faces[i].v[2]]; double v = -Volume6(p1, p2, p3, C); totv += v; tot = tot + Centroid(p1, p2, p3, C) * v; } return tot / totv; } //凸包重心到表面最近距离 double mindist(Point_3D C) { double ans = 1e30; for(int i = 0; i < faces.size(); i++) { Point_3D p1 = P[faces[i].v[0]], p2 = P[faces[i].v[1]], p3 = P[faces[i].v[2]]; ans = min(ans, fabs(-Volume6(p1, p2, p3, C) / Area2(p1, p2, p3))); } return ans; } }; int main() { return 0; }