题目大意就是说,n个城市,修成一棵树,其中有一条边是可以用魔法的,这条边是不需要计费的,每个城市有住人,问修完所有的边的总路程是B,那条魔法修建边链接的两个城市的人口是A,求A/B的最大值。
分析:一开始就能想到的是B小、A大。因为是修成树,所以B开始就直接是最小生成树的值了,同时记录两点路径上的最大边权。在就是枚举修建的魔法边,然后删掉两点间的最大边权值(前有做记录),这是直接算就是了,取最大的A/B。
/***************************************** Author :Crazy_AC(JamesQi) Time :2015 File Name : *****************************************/ // #pragma comment(linker, "/STACK:1024000000,1024000000") #include <iostream> #include <algorithm> #include <iomanip> #include <sstream> #include <string> #include <stack> #include <queue> #include <deque> #include <vector> #include <map> #include <set> #include <cstdio> #include <cstring> #include <cmath> #include <cstdlib> #include <climits> using namespace std; #define MEM(x,y) memset(x, y,sizeof x) #define pk push_back typedef long long LL; typedef unsigned long long ULL; typedef pair<int,int> ii; typedef pair<ii,int> iii; const double eps = 1e-10; const int inf = 1 << 30; const int INF = 0x3f3f3f3f; const int MOD = 1e9 + 7; /**********************Point*****************************/ struct Point{ double x,y; Point(double x=0,double y=0):x(x),y(y){} }; typedef Point Vector; Vector operator + (Vector A,Vector B){ return Vector(A.x + B.x,A.y + B.y); } Vector operator - (Vector A,Vector B){//向量减法 return Vector(A.x - B.x,A.y - B.y); } Vector operator * (Vector A,double p){//向量数乘 return Vector(A.x * p,A.y * p); } Vector operator / (Vector A,double p){//向量除实数 return Vector(A.x / p,A.y / p); } int dcmp(double x){//精度正负、0的判断 if (fabs(x) < eps) return 0; return x < 0?-1:1; } bool operator < (const Point& A,const Point& B){//小于符号的重载 return A.x < B.x || (A.x == B.x && A.y < B.y); } bool operator == (const Point& A,const Point& B){//点重的判断 return dcmp(A.x - B.x) == 0&& dcmp(A.y - B.y) == 0; } double Dot(Vector A,Vector B){//向量的点乘 return A.x * B.x + A.y * B.y; } double Length(Vector A){//向量的模 return sqrt(Dot(A,A)); } double Angle(Vector A,Vector B){//向量的夹角 return acos(Dot(A,B) / Length(A) / Length(B)); } double Cross(Vector A,Vector B){//向量的叉积 return A.x * B.y - A.y * B.x; } double Area2(Point A,Point B,Point C){//三角形面积 return Cross(B - A,C - A); } Vector Rotate(Vector A,double rad){//向量的旋转 return Vector(A.x * cos(rad) - A.y * sin(rad),A.x * sin(rad) + A.y * cos(rad)); } Vector Normal(Vector A){//法向量 int L = Length(A); return Vector(-A.y / L,A.x / L); } double DistanceToLine(Point p,Point A,Point B){//p到直线AB的距离 Vector v1 = B - A,v2 = p - A; return fabs(Cross(v1,v2)) / Length(v1); } double DistanceToSegment(Point p,Point A,Point B){//p到线段AB的距离 if (A == B) return Length(p - A); Vector v1 = B - A, v2 = p - A,v3 = p - B; if (dcmp(Dot(v1,v2) < 0)) return Length(v2); else if (dcmp(Dot(v1,v3)) > 0) return Length(v3); else return DistanceToLine(p,A,B); } bool SegmentProperIntersection(Point A1,Point A2,Point B1,Point B2){//线段相交 double c1 = Cross(A2 - A1,B1 - A1),c2 = Cross(A2 - A1,B2 - A1); double c3 = Cross(B2 - B1,A1 - B1),c4 = Cross(B2 - B1,A2 - B1); return dcmp(c1)*dcmp(c2) < 0 && dcmp(c3)*dcmp(c4) < 0; } const int N = 1010; Point p[N]; int A[N]; int Pre[N], Mark[N]; double Path[N][N], Dist[N]; double G[N][N]; int n, m; double Prim() { double ret = 0.0; memset(Dist, INF,sizeof Dist); memset(Path, 0,sizeof Path); memset(Mark, 0,sizeof Mark); Dist[0] = 0; Mark[0] = true; for (int i = 1;i <= n;++i) { Dist[i] = G[0][i]; Pre[i] = 0; } for (int i = 1;i < n;++i) { int u = -1; for (int j = 0;j < n;++j) { if (Mark[j]) continue; if (u == -1 || Dist[j] < Dist[u]) { u = j; } } if (u == -1) return -1; Mark[u] = true; ret += Dist[u]; for (int j = 0;j < n;++j) { if (Mark[j] && j != u) Path[j][u] = Path[u][j] = max(Path[j][Pre[u]], Dist[u]); if (!Mark[j]) if (Dist[j] > G[u][j]) { Dist[j] = G[u][j]; Pre[j] = u; } } } return ret; } void solve() { double ans = Prim(); double answer = 0.0; for (int i = 0;i < n;++i) { for (int j = i + 1;j < n;++j) { answer = max(answer, (A[i] + A[j])*1.0 / (ans - Path[i][j])); } } printf("%.2lf\n", answer); } int main() { // freopen("in.txt","r",stdin); // freopen("out.txt","w",stdout); int t; scanf("%d",&t); while(t--) { scanf("%d",&n); for (int i = 0;i < n;++i) scanf("%lf%lf%d",&p[i].x,&p[i].y,&A[i]); m = 0; memset(G, INF, sizeof G); for (int i = 0;i < n;++i) { G[i][i] = 0; for (int j = i + 1;j < n;++j) { G[i][j] = G[j][i] = Length(p[i] - p[j]); } } solve(); } return 0; }