隐马尔科夫学习七(五)

出处:http://www.52nlp.cn/hmm-learn-best-practices-seven-forward-backward-algorithm-5

七、前向-后向算法(Forward-backward algorithm)

  上一节我们定义了两个变量及相应的期望值,本节我们利用这两个变量及其期望值来重新估计隐马尔科夫模型(HMM)的参数pi,A及B:

隐马尔科夫学习七(五)_第1张图片

  如果我们定义当前的HMM模型为fb13,那么可以利用该模型计算上面三个式子的右端;我们再定义重新估计的HMM模型为fb14,那么上面三个式子的左端就是重估的HMM模型参数。Baum及他的同事在70年代证明了fb15因此如果我们迭代地的计算上面三个式子,由此不断地重新估计HMM的参数,那么在多次迭代后可以得到的HMM模型的一个最大似然估计。不过需要注意的是,前向-后向算法所得的这个结果(最大似然估计)是一个局部最优解。
  关于前向-后向算法和EM算法的具体关系的解释,大家可以参考HMM经典论文《A tutorial on Hidden Markov Models and selected applications in speech recognition》,这里就不详述了。下面我们给出UMDHMM中的前向-后向算法示例,这个算法比较复杂,这里只取主函数,其中所引用的函数大家如果感兴趣的话可以自行参考UMDHMM。

前向-后向算法程序示例如下(在baum.c中):

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
void BaumWelch(HMM *phmm, int T, int *O, double **alpha, double **beta, double **gamma, int *pniter, double *plogprobinit, double *plogprobfinal)
{
  int   i, j, k;
  int   t, l = 0;

  double    logprobf, logprobb,  threshold;
  double    numeratorA, denominatorA;
  double    numeratorB, denominatorB;

  double ***xi, *scale;
  double delta, deltaprev, logprobprev;

  deltaprev = 10e-70;

  xi = AllocXi(T, phmm->N);
  scale = dvector(1, T);

  ForwardWithScale(phmm, T, O, alpha, scale, &logprobf);
  *plogprobinit = logprobf; /* log P(O |intial model) */
  BackwardWithScale(phmm, T, O, beta, scale, &logprobb);
  ComputeGamma(phmm, T, alpha, beta, gamma);
  ComputeXi(phmm, T, O, alpha, beta, xi);
  logprobprev = logprobf;

  do  
  { 

    /* reestimate frequency of state i in time t=1 */
    for (i = 1; i <= phmm->N; i++) 
      phmm->pi[i] = .001 + .999*gamma[1][i];

    /* reestimate transition matrix  and symbol prob in
        each state */
    for (i = 1; i <= phmm->N; i++) 
    { 
      denominatorA = 0.0;
      for (t = 1; t <= T - 1; t++) 
        denominatorA += gamma[t][i];

      for (j = 1; j <= phmm->N; j++) 
      {
        numeratorA = 0.0;
        for (t = 1; t <= T - 1; t++) 
          numeratorA += xi[t][i][j];
        phmm->A[i][j] = .001 +
                 .999*numeratorA/denominatorA;
      }

      denominatorB = denominatorA + gamma[T][i]; 
      for (k = 1; k <= phmm->M; k++) 
      {
        numeratorB = 0.0;
        for (t = 1; t <= T; t++) 
        {
          if (O[t] == k) 
            numeratorB += gamma[t][i];
        }

        phmm->B[i][k] = .001 +
                 .999*numeratorB/denominatorB;
      }
    }

    ForwardWithScale(phmm, T, O, alpha, scale, &logprobf);
    BackwardWithScale(phmm, T, O, beta, scale, &logprobb);
    ComputeGamma(phmm, T, alpha, beta, gamma);
    ComputeXi(phmm, T, O, alpha, beta, xi);

    /* compute difference between log probability of 
      two iterations */
    delta = logprobf - logprobprev; 
    logprobprev = logprobf;
    l++;

  }
  while (delta > DELTA); /* if log probability does not 
              change much, exit */ 
 
  *pniter = l;
  *plogprobfinal = logprobf; /* log P(O|estimated model) */
  FreeXi(xi, T, phmm->N);
  free_dvector(scale, 1, T);
}

  
  前向-后向算法就到此为止了。

你可能感兴趣的:(语音识别,隐马尔科夫)