原题地址:http://projecteuler.net/problem=2
Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting with 1 and 2, the first 10 terms will be:
1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...
By considering the terms in the Fibonacci sequence whose values do not exceed four million, find the sum of the even-valued terms.
大意是:
斐波那契数列中的每一项被定义为前两项之和。从1和2开始,斐波那契数列的前十项为:
1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...
考虑斐波那契数列中数值不超过4百万的项,找出这些项中值为偶数的项之和。
解法1:
从1遍历到4百万,如果斐波那契数列中某项是偶数,则累加起来。
python代码如下:
i = 1 j = 2 n = 2 sum = 0 max = 4E6 while n < max: if n%2 ==0: sum+=n n = i + j i = j j = n print sum
注:题目的中文翻译源自http://pe.spiritzhang.com