题目链接:https://leetcode.com/problems/number-of-connected-components-in-an-undirected-graph/
Given n
nodes labeled from 0
to n - 1
and a list of undirected edges (each edge is a pair of nodes), write a function to find the number of connected components in an undirected graph.
Example 1:
0 3 | | 1 --- 2 4
Given n = 5
and edges = [[0, 1], [1, 2], [3, 4]]
, return 2
.
Example 2:
0 4 | | 1 --- 2 --- 3
Given n = 5
and edges = [[0, 1], [1, 2], [2, 3], [3, 4]]
, return 1
.
Note:
You can assume that no duplicate edges will appear in edges
. Since all edges are undirected, [0, 1]
is the same as [1, 0]
and thus will not appear together in edges
.
思路: 为每一个结点设置一个父结点, 初始为本身. 如果一条边的最终父结点相同, 则说明他们是联通的, 否则就将第二个结点的最终父结点设置为第一个结点的最终父结点.
这样初始总共有n个不联通的结点, 每次新添加一条边, 如果他们最终父结点不想同, 则说明减少一个不联通的点.
代码如下:
class Solution { public: int countComponents(int n, vector<pair<int, int>>& edges) { vector<int> parent(n); int ans = n; for(int i = 0; i< n; i++) parent[i] = i; for(auto val: edges) { int pa = val.first, pb = val.second; while(parent[pa] != pa) pa = parent[pa]; while(parent[pb] != pb) pb = parent[pb]; if(pa != pb) { parent[pb] = pa; ans--; } } return ans; } };参考: https://leetcode.com/discuss/76519/similar-to-number-of-islands-ii-with-a-findroot-function