1:概述
线段树,类似区间树,是一个完全二叉树,它在各个节点保存一条线段(数组中的一段子数组),主要用于高效解决连续区间的动态查询问题,由于二叉结构的特性,它基本能保持每个操作的复杂度为O(lgN)!
性质:父亲的区间是[a,b],(c=(a+b)/2)左儿子的区间是[a,c],右儿子的区间是[c+1,b],线段树需要的空间为数组大小的四倍
2:基本操作(demo用的是查询区间最小值)
线段树的主要操作有:
(1):线段树的构造 void build(int node, int begin, int end);
主要思想是递归构造,如果当前节点记录的区间只有一个值,则直接赋值,否则递归构造左右子树,最后回溯的时候给当前节点赋值
#include <iostream>
using namespace std;
const int maxind = 256;
int segTree[maxind * 4 + 10];
int array[maxind];
/* 构造函数,得到线段树 */
void build(int node, int begin, int end)
{
if (begin == end)
segTree[node] = array[begin]; /* 只有一个元素,节点记录该单元素 */
else
{
/* 递归构造左右子树 */
build(2*node, begin, (begin+end)/2);
build(2*node+1, (begin+end)/2+1, end);
/* 回溯时得到当前node节点的线段信息 */
if (segTree[2 * node] <= segTree[2 * node + 1])
segTree[node] = segTree[2 * node];
else
segTree[node] = segTree[2 * node + 1];
}
}
int main()
{
array[0] = 1, array[1] = 2,array[2] = 2, array[3] = 4, array[4] = 1, array[5] = 3;
build(1, 0, 5);
for(int i = 1; i<=20; ++i)
cout<< "seg"<< i << "=" <<segTree[i] <<endl;
return 0;
}
(2):区间查询int query(int node, int begin, int end, int left, int right);
(其中node为当前查询节点,begin,end为当前节点存储的区间,left,right为此次query所要查询的区间)
主要思想是把所要查询的区间[a,b]划分为线段树上的节点,然后将这些节点代表的区间合并起来得到所需信息
比如前面一个图中所示的树,如果询问区间是[0,2],或者询问的区间是[3,3],不难直接找到对应的节点回答这一问题。但并不是所有的提问都这么容易回答,比如[0,3],就没有哪一个节点记录了这个区间的最小值。当然,解决方法也不难找到:把[0,2]和[3,3]两个区间(它们在整数意义上是相连的两个区间)的最小值“合并”起来,也就是求这两个最小值的最小值,就能求出[0,3]范围的最小值。同理,对于其他询问的区间,也都可以找到若干个相连的区间,合并后可以得到询问的区间。
int query(int node, int begin, int end, int left, int right)
{
int p1, p2;
/* 查询区间和要求的区间没有交集 */
if (left > end || right < begin)
return -1;
/* if the current interval is included in */
/* the query interval return segTree[node] */
if (begin >= left && end <= right)
return segTree[node];
/* compute the minimum position in the */
/* left and right part of the interval */
p1 = query(2 * node, begin, (begin + end) / 2, left, right);
p2 = query(2 * node + 1, (begin + end) / 2 + 1, end, left, right);
/* return the expect value */
if (p1 == -1)
return p2;
if (p2 == -1)
return p1;
if (p1 <= p2)
return p1;
return p2;
}
可见,这样的过程一定选出了尽量少的区间,它们相连后正好涵盖了整个[left,right],没有重复也没有遗漏。同时,考虑到线段树上每层的节点最多会被选取2个,一共选取的节点数也是O(log n)的,因此查询的时间复杂度也是O(log n)。
线段树并不适合所有区间查询情况,它的使用条件是“相邻的区间的信息可以被合并成两个区间的并区间的信息”。即问题是可以被分解解决的。
(3):区间或节点的更新 及 线段树的动态维护update (这是线段树核心价值所在,节点中的标记域可以解决N多种问题)
动态维护需要用到标记域,延迟标记等。
a:单节点更新
void Updata(int node, int begin, int end, int ind, int add)/*单节点更新*/
{
if( begin == end )
{
segTree[node] += add;
return ;
}
int m = ( left + right ) >> 1;
if(ind <= m)
Updata(node * 2,left, m, ind, add);
else
Updata(node * 2 + 1, m + 1, right, ind, add);
/*回溯更新父节点*/
segTree[node] = min(segTree[node * 2], segTree[node * 2 + 1]);
}
b:区间更新(线段树中最有用的)
需要用到延迟标记,每个结点新增加一个标记,记录这个结点是否被进行了某种修改操作(这种修改操作会影响其子结点)。对于任意区间的修改,我们先按照查询的方式将其划分成线段树中的结点,然后修改这些结点的信息,并给这些结点标上代表这种修改操作的标记。在修改和查询的时候,如果我们到了一个结点p,并且决定考虑其子结点,那么我们就要看看结点p有没有标记,如果有,就要按照标记修改其子结点的信息,并且给子结点都标上相同的标记,同时消掉p的标记。(优点在于,不用将区间内的所有值都暴力更新,大大提高效率,因此区间更新是最优用的操作)
void Change(node *p, int a, int b) /* 当前考察结点为p,修改区间为(a,b]*/
{
if (a <= p->Left && p->Right <= b)
/* 如果当前结点的区间包含在修改区间内*/
{
...... /* 修改当前结点的信息,并标上标记*/
return;
}
Push_Down(p); /* 把当前结点的标记向下传递*/
int mid = (p->Left + p->Right) / 2; /* 计算左右子结点的分隔点 if (a < mid) Change(p->Lch, a, b); /* 和左孩子有交集,考察左子结点*/
if (b > mid) Change(p->Rch, a, b); /* 和右孩子有交集,考察右子结点*/
Update(p); /* 维护当前结点的信息(因为其子结点的信息可能有更改)*/
}
3:主要应用
(1):区间最值查询问题 (见模板1)
(2):连续区间修改或者单节点更新的动态查询问题 (见模板2)
(3):多维空间的动态查询 (见模板3)
模板1:
RMQ,查询区间最值下标—min
#include <iostream>
#include <cstring>
using namespace std;
#define MAXN 100
#define MAXIND 256 //线段树节点个数
//构建线段树,目的:得到M数组
void build(int node, int begin, int end, int M[], int A[])
{
if (begin == end)
M[node] = begin; //只有一个元素,只有一个下标
else
{
build(2 * node, begin, (begin + end) / 2, M, A);
build(2 * node + 1, (begin + end) / 2 + 1, end, M, A);
if (A[M[2 * node]] <= A[M[2 * node + 1]])
M[node] = M[2 * node];
else
M[node] = M[2 * node + 1];
}
}
//找出区间 [i, j] 上的最小值的索引
int query(int node, int begin, int end, int M[], int A[], int i, int j)
{
int p1, p2;
//查询区间和要求的区间没有交集
if (i > end || j < begin)
return -1;
if (begin >= i && end <= j)
return M[node];
p1 = query(2 * node, begin, (begin + end) / 2, M, A, i, j);
p2 = query(2 * node + 1, (begin + end) / 2 + 1, end, M, A, i, j);
//return the position where the overall
//minimum is
if (p1 == -1)
return M[node] = p2;
if (p2 == -1)
return M[node] = p1;
if (A[p1] <= A[p2])
return M[node] = p1;
return M[node] = p2;
}
int main()
{
int M[MAXIND]; //下标1起才有意义,否则不是二叉树,保存下标编号节点对应区间最小值的下标.
memset(M,-1,sizeof(M));
int a[] = {3, 4, 5, 7, 2, 1, 0, 3, 4, 5};
build(1, 0, sizeof(a)/sizeof(a[0])-1, M, a);
cout << query(1, 0, sizeof(a)/sizeof(a[0])-1, M, a, 0, 5) << endl;
return 0;
}
模板2:
连续区间修改或者单节点更新的动态查询问题 (此模板查询区间和)
#include <cstdio>
#include <algorithm>
using namespace std;
#define lson l , m , rt << 1
#define rson m + 1 , r , rt << 1 | 1
#define root 1 , N , 1
#define LL long long
const int maxn = 111111;
LL add[maxn<<2];
LL sum[maxn<<2];
void PushUp(int rt) {
sum[rt] = sum[rt<<1] + sum[rt<<1|1];
}
void PushDown(int rt,int m) {
if (add[rt]) {
add[rt<<1] += add[rt];
add[rt<<1|1] += add[rt];
sum[rt<<1] += add[rt] * (m - (m >> 1));
sum[rt<<1|1] += add[rt] * (m >> 1);
add[rt] = 0;
}
}
void build(int l,int r,int rt) {
add[rt] = 0;
if (l == r) {
scanf("%lld",&sum[rt]);
return ;
}
int m = (l + r) >> 1;
build(lson);
build(rson);
PushUp(rt);
}
void update(int L,int R,int c,int l,int r,int rt) {
if (L <= l && r <= R) {
add[rt] += c;
sum[rt] += (LL)c * (r - l + 1);
return ;
}
PushDown(rt , r - l + 1);
int m = (l + r) >> 1;
if (L <= m) update(L , R , c , lson);
if (m < R) update(L , R , c , rson);
PushUp(rt);
}
LL query(int L,int R,int l,int r,int rt) {
if (L <= l && r <= R) {
return sum[rt];
}
PushDown(rt , r - l + 1);
int m = (l + r) >> 1;
LL ret = 0;
if (L <= m) ret += query(L , R , lson);
if (m < R) ret += query(L , R , rson);
return ret;
}
int main() {
int N , Q;
scanf("%d%d",&N,&Q);
build(root);
while (Q --) {
char op[2];
int a , b , c;
scanf("%s",op);
if (op[0] == 'Q') {
scanf("%d%d",&a,&b);
printf("%lld\n",query(a , b ,root));
} else {
scanf("%d%d%d",&a,&b,&c);
update(a , b , c , root);
}
}
return 0;
}
模板3:
多维空间的动态查询
hdu-1166-敌兵布阵
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <cmath>
#include <map>
#include <algorithm>
#define N 50010
const int mm = 1000000007;
using namespace std;
int n, sum[N<<2];
void PushUp(int root)
{
sum[root] = sum[root<<1] + sum[root<<1|1];
}
void build(int begin, int end, int root)
{
if (begin == end)
{
cin >> sum[root];
return ;
}
int m = (begin+end)>>1;
build(begin, m, root<<1);
build(m+1, end, root<<1|1);
PushUp(root);
}
void update(int pos, int add, int l, int r, int root)
{
if (l == r)
{
sum[root] += add;
return;
}
int m = (l+r)>>1;
if (pos <= m) update(pos, add, l, m, root<<1);
else update(pos, add, m+1, r, root<<1|1);
PushUp(root);
}
int query(int L, int R, int l, int r, int root)
{
if (L <= l && r <= R) return sum[root];
int m = (l+r)>>1;
int ans = 0;
if (L <= m) ans += query(L, R, l, m, root<<1);
if (R > m) ans += query(L, R, m+1, r, root<<1|1);
return ans;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("1.txt", "r", stdin);
#endif
// ios::sync_with_stdio(false);
// cin.tie(0);
int i, j, T, a, b, ans;
cin >> T;
for (i = 1; i <= T; i++)
{
printf("Case %d:\n",i);
scanf("%d", &n);
build(1, n, 1);
char op[10];
while( scanf("%s",op) &&op[0]!='E' )
{
scanf("%d %d", &a, &b);
if(op[0] == 'Q')
printf("%d\n", query(a, b, 1, n, 1));
else if(op[0] =='S')
update(a, -b, 1, n, 1);
else
update(a,b,1,n,1);
}
}
return 0;
}