Given a binary tree containing digits from 0-9
only, each root-to-leaf path could represent a number.
An example is the root-to-leaf path 1->2->3
which represents the number 123
.
Find the total sum of all root-to-leaf numbers.
For example,
1 / \ 2 3
The root-to-leaf path 1->2
represents the number 12
.
The root-to-leaf path 1->3
represents the number 13
.
Return the sum = 12 + 13 = 25
.
Once we see this kind of problem, no matter what sum is required to output, "all root-to-leaf" phrase reminds us the classic Tree Traversal or Depth-First-Search algorithm. Then according to the specific problem, compute and store the values we need. Here in this problem, while searching deeper, add the values up (times 10 + current value), and add the sum to final result if meet the leaf node (left and right child are both NULL).
Java
public class Solution { int result; public int sumNumbers(TreeNode root) { result = 0; getSum(root, 0); return result; } public void getSum(TreeNode root, int path){ if(root==null) return; path = path*10+root.val; if(root.left==null && root.right==null){ result+=path; return; } getSum(root.left, path); getSum(root.right, path); } }
void sumSubpath(TreeNode* root, int &sum, int path){ if(root == NULL) return; path = path*10 + root->val; if(root->left == NULL && root->right == NULL){ sum += path; return; } sumSubpath(root->left, sum, path); sumSubpath(root->right, sum, path); } int sumNumbers(TreeNode *root) { int sum = 0; int path = 0; sumSubpath(root,sum,0); return sum; }