【ML】【python】Machine Learning in Action

今天开始看《Machine Learning in Action》这本书,觉得还是记录一下比较好。


KNN(注释比较细,因为我对python不太熟):

from numpy import *
import operator
'''
import KNN
use:group,labels = KNN.createDataSet()
KNN.classify0([0,0],group,labels,3)
'''

def createDataSet():
    group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
    labels = ['A','A','B','B']
    #这里返回的是值?
    return group,labels



def classify0(inX,dataSet,labels,k):
    #[0]是行,[1]是列
    dataSetSize = dataSet.shape[0]
    #tile是使用某个array平铺
    diffMat = tile(inX,(dataSetSize,1))-dataSet
    #array**2相当于matlab中的 .^2
    sqDiffMat = diffMat**2
    #axis = 1 意思是各行相加
    sqDistances = sqDiffMat.sum(axis = 1)
    #开方
    distances = sqDistances**0.5
    #argsort 是将array中的元素按照从小到大排序之后各个元素的在原array中的index
    sortedDistIndices = distances.argsort()

    #classCount用来记录A,B两类的投票数
    classCount = {}
    for i in range(k):
        #获得label
        voteIlabel =labels[sortedDistIndices[i]]
        #classCount.get(voteIlabel,0)的意思是获得voteIlabel对应的value,如果没有该voteIlabel,就返回0
        classCount[voteIlabel] = classCount.get(voteIlabel,0)+1

    #a = {1:'a',2:'b'} a.items() 得到:dict_items([(1, 'a'), (2, 'b')])
    #operator.itemgetter(1) 得到任意builtin item 的index为1的项,即按照投票数从大到小(reverse)排序
    sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
    return sortedClassCount[0][0]
    





你可能感兴趣的:(【ML】【python】Machine Learning in Action)