Train Problem II
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 7578 Accepted Submission(s): 4081
Problem Description
As we all know the Train Problem I, the boss of the Ignatius Train Station want to know if all the trains come in strict-increasing order, how many orders that all the trains can get out of the railway.
Input
The input contains several test cases. Each test cases consists of a number N(1<=N<=100). The input is terminated by the end of file.
Output
For each test case, you should output how many ways that all the trains can get out of the railway.
Sample Input
Sample Output
1
2
5
16796
Hint
The result will be very large, so you may not process it by 32-bit integers.
出栈次序
一个栈(无穷大)的进栈序列为1,2,3,…,n,有多少个不同的出栈序列?[4-5]
常规分析
首先,我们设f(n)=序列个数为n的出栈序列种数。(我们假定,最后出栈的元素为k,显然,k取不同值时的情况是相互独立的,也就是求出每种k最后出栈的情况数后可用加法原则,由于k最后出栈,因此,在k入栈之前,比k小的值均出栈,此处情况有f(k-1)种,而之后比k大的值入栈,且都在k之前出栈,因此有f(n-k)种方式,由于比k小和比k大的值入栈出栈情况是相互独立的,此处可用乘法原则,f(n-k)*f(k-1)种,求和便是Catalan递归式。ps.author.陶百百)
首次出空之前第一个出栈的序数k将1~n的序列分成两个序列,其中一个是1~k-1,序列个数为k-1,另外一个是k+1~n,序列个数是n-k。
此时,我们若把k视为确定一个序数,那么根据乘法原理,f(n)的问题就等价于——序列个数为k-1的出栈序列种数乘以序列个数为n - k的出栈序列种数,即选择k这个序数的f(n)=f(k-1)×f(n-k)。而k可以选1到n,所以再根据加法原理,将k取不同值的序列种数相加,得到的总序列种数为:f(n)=f(0)f(n-1)+f(1)f(n-2)+……+f(n-1)f(0)。
看到此处,再看看卡特兰数的递推式,答案不言而喻,即为f(n)=h(n)= C(2n,n)/(n+1)= c(2n,n)-c(2n,n+1)(n=0,1,2,……)。
最后,令f(0)=1,f(1)=1。
令h(0)=1,h(1)=1,catalan数满足递推式[1] :
h(n)= h(0)*h(n-1)+h(1)*h(n-2) + ... + h(n-1)h(0) (n>=2)
例如:h(2)=h(0)*h(1)+h(1)*h(0)=1*1+1*1=2
h(3)=h(0)*h(2)+h(1)*h(1)+h(2)*h(0)=1*2+1*1+2*1=5
另类递推式[2] :
h(n)=h(n-1)*(4*n-2)/(n+1);
递推关系的解为:
h(n)=C(2n,n)/(n+1) (n=0,1,2,...)
递推关系的另类解为:
h(n)=c(2n,n)-c(2n,n-1)(n=0,1,2,...)
本来想用C++记忆化递推,结果结果没超时,long long爆了。。。。
到几十的时候long long就已经爆了。。。
WA代码......
#include <cstdio>
#include <iostream>
#include <cstring>
using namespace std;
long long Cata[120], N;
long long f(long long x) {
if (Cata[x]) return Cata[x]; //记忆化搜索
long long sum = 0;
for (long long i = 1; i <= x; i++) {
sum += (f(i - 1) * f(x - i));
}
return Cata[x] = sum; //记忆化搜索
}
int main()
{
while (~scanf("%I64d", &N)) {
memset(Cata, 0, sizeof(Cata));
Cata[0] = Cata[1] = 1;
printf("%I64d\n", f(N));
}
return 0;
}
用java大数类做,用一个数组递推,慢就慢点吧,方便很多
import java.math.*;
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
BigInteger[] c = new BigInteger[105];
c[0] = BigInteger.valueOf(1);
c[1] = BigInteger.valueOf(1);
for (int i = 2; i <= 100; i++) {
c[i] = c[i - 1].multiply(BigInteger.valueOf(4 * i - 2)).divide(BigInteger.valueOf(i + 1));
}
Scanner in = new Scanner(System.in);
int n;
while (in.hasNext()) {
n = in.nextInt();
System.out.println(c[n]);
}
in.close();
}
}