libuv之基础

TCP客户端连接步骤:

①  .连接方法

Uv_loop_t *loop = uv_default_loop();

 

uv_tcp_t *client = malloc…;

uv_connect_t* connect_req = malloc…;

 

uv_tcp_init(loop, client)

 

uv_tcp_connect(connect_req,  client, addr,  connect_cb);

 

uv_run(loop);

 

getchar(); //服务端不需要这个,现在还不明白为什么

 

②.回调函数

static void connect_cb(uv_connect_t*req, int status)

{

         int r;

         uv_buf_t buf = uv_buf_init("just test", 10);

 

这必须是动态分配内存,在uv_write函数内部会对这个指针赋值。

         uv_write_t *reqw = (uv_write_t*)malloc(sizeof *reqw);

 

         在write_cb中,释放分配的内存。

         r = uv_write(reqw, (uv_stream_t*)(req->handle),&buf, 1, write_cb);

}

 

static void write_cb(uv_write_t*req, int status)

{

}

static void read_cb(uv_stream_t*tcp, ssize_t nread, uv_buf_t buf)

{

}

uv_connect_tis a subclass of uv_req_t

 

 

 

 

 

 

 

 

 

2.TCP服务端连接步骤

①.连接方法

         loop = uv_default_loop();

 

         structsockaddr_in addr = uv_ip4_addr("127.0.0.1",5432);

         int r;

 

         server = (uv_handle_t*)&tcpServer;

         r = uv_tcp_init(loop, &tcpServer);

         if (r){

                   std::cout << "Socket creation error" <<std::endl;

                   return;

         }

 

         r = uv_tcp_bind(&tcpServer, addr);

         if (r){

                   std::cout << "Bind error" << std::endl;

                   return;

         }

 

         r =uv_listen((uv_stream_t*)&tcpServer, 10, on_connection);

         if (r){

                   std::cout << "Listen error" << std::endl;

                   return;

         }

 

         uv_run(loop);

 

②.回调函数

static voidon_connection(uv_stream_t* server, int status)

{

         uv_stream_t* stream;

         int r;

用这种方式来初始化一个新连接

         stream = (uv_stream_t*)malloc(sizeof(uv_tcp_t));

         ASSERT(stream != NULL);

         r = uv_tcp_init(loop,(uv_tcp_t*)stream);

         stream->data = server;

         r = uv_accept(server, stream);

}

 

*uv_stream_t is a subclass of uv_handle_t

 *

 * uv_stream is an abstract class.

 *

 * uv_stream_t is the parent class of uv_tcp_t,uv_pipe_t, uv_tty_t, and

 * soon uv_file_t.

 

在客户端的连接中

Uv_tcp_connect(connect_req…);connect_req是一个uv_connect_t*参数,相应的connect_cb的第一个参数为uv_connect_t*,(uv_connect_t是uv_req_t的子类)

 

服务端的连接中

uv_listen((uv_stream_t*)&tcpServer,10, on_connection);相应的on_connect的第一个参数为uv_stream_t*

 

看来node.js的思想和ACE非常像,把请求对象和连接对象分别封装成不同概念的东西。

 

3.tcp –open

创建套接字然后使用uv_tcp_open,再uv_tcp_connect时,函数内部不会再创建套接字,仅此而已。

 

4.tcp_read_stop

Uv_read_stop((uv_stream_t*)&tcp_handle);

Uv_close((uv_handle_t*)tcp_handle);

 

UDP客户端:

         uv_udp_send_t req;

         r = uv_udp_init(uv_default_loop(),&client);

         ASSERT(r == 0);

 

         buf = uv_buf_init("PING", 4);

         r = uv_udp_send(&req, &client,&buf, 1, addr, cl_send_cb);

 

         voidcl_send_cb(uv_udp_send_t* req, intstatus)

         {}

UDP服务端:

         r = uv_udp_init(uv_default_loop(),&server);

         ASSERT(r == 0);

 

         r = uv_udp_bind(&server, addr, 0);

         ASSERT(r == 0);

 

         r = uv_udp_recv_start(&server,alloc_cb, sv_recv_cb);

         ASSERT(r == 0);

 

 

 

 

 

 

static void sv_recv_cb(uv_udp_t* handle,

                                                        ssize_tnread,

                                                        uv_buf_tbuf,

                                                        struct sockaddr* addr,

                                                        unsigned flags)

{}

 

定时器

int64_t   start_time = uv_now(uv_default_loop());

 

void never_cb(uv_timer_t* handle, int status)

{

         std::cout << "never_cb should never be called"<< std::endl;

}

 

static voidonce_close_cb(uv_handle_t*handle)

{}

static voidonce_cb(uv_timer_t* handle, int status)

{

 

         uv_close((uv_handle_t*)handle, once_close_cb);

 

         uv_update_time(uv_default_loop());

}

 

         r = uv_timer_init(uv_default_loop(), &never);

         ASSERT(r == 0);

         r = uv_timer_start(&never, never_cb, 100, 100);

         ASSERT(r == 0);

         r = uv_timer_stop(&never);

         ASSERT(r == 0);

         uv_unref((uv_handle_t*)&never);

 

         uv_run(uv_default_loop());

 

 

 

 

同步对象

uv_cond_init(&signal_cond)

uv_cond_destroy(&signal_cond);

 

 

If libuv has been compiled with debuggingenabled, uv_mutex_destroy()uv_mutex_lock() and uv_mutex_unlock() will abort() on error.Similarly uv_mutex_trylock() will abort if the error is anything otherthan EAGAIN.

 

Note:

Libuv 里面有read/writeuv_rwlock_t numlock;

Warning

mutexesand rwlocks DO NOT work inside a signal handler, whereas uv_async_send does.

 

线程间通信用uv_async_t

 

线程对象

uv_thread_t tid;

         int r;

 

         r = uv_thread_create(&tid,thread_entry, (void*)42);

         ASSERT(r == 0);

 

         r = uv_thread_join(&tid);

 

线程池

r = uv_queue_work(uv_default_loop(),&work_req, NULL, after_work_cb); //倒数第二个参数为NULL,返回-1,after_work_cb也不会被调用

  ASSERT(r == -1);

 

libuv work queue

uv_queue_work() is a convenience function that allows an application torun a task in a separate thread, and have a callback that is triggered when thetask is done. A seemingly simple function, what makes uv_queue_work() tempting is that it allows potentiallyany third-party libraries to be used with the event-loop paradigm. When you useevent loops, it is imperativeto make sure that no function which runs periodically in the loop thread blockswhen performing I/O or is a serious CPU hog, because this means the loop slows downand events are not being dealt with at full capacity.

意思是:IO线程里面不应该有阻塞操作,libuv的处理方式是让系统自己处理这些阻塞操作。就是IOCP嘛。

 

你可能感兴趣的:(libuv之基础)