Given a string S and a string T, count the number of distinct subsequences of T in S.
A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, "ACE"
is a subsequence of "ABCDE"
while "AEC"
is not).
Here is an example:
S = "rabbbit"
, T = "rabbit"
Return 3
.
Analysis
1d DP. key point is how to get the transition function.
assume the string S length j, string T length i.We need to get number of discticnt subsequences of T is S, that is dp[i][j]
if T[i]!=S[j] dp[i][j]=dp[i][j-1]
else T[i]==S[j] dp[i][j] = t[i][j-1]+t[i-1][j-1]
init condition
dp[i][0] = 0 , dp[0][j] = 0
设母串的长度为 j,
子串的长度为 i,我们要求的就是长度为 i 的字串在长度为 j 的母串中出现的次数,设为 t[i][j],若母串的最后一个字符与子串的最后一个字符不同,则长度为 i 的子串在长度为 j 的母串中出现的次数就是母串的前 j - 1 个字符中子串出现的次数,即 t[i][j] = t[i][j - 1],若母串的最后一个字符与子串的最后一个字符相同,那么除了前 j - 1 个字符出现字串的次数外,还要加上子串的前 i - 1 个字符在母串的前 j - 1 个字符中出现的次数,即 t[i][j] = t[i][j - 1] + t[i - 1][j - 1]。
java
public int numDistinct(String S, String T) { int s1 = S.length(); int t1 = T.length(); if(t1>s1) return 0; int [][]num = new int[t1+1][s1+1]; for(int i=0;i<=s1;i++) num[0][i] = 1; for(int i=1;i<=t1;i++) num[i][0] = 0; for(int i=1;i<=t1;i++){ for(int j=1;j<=s1;j++){ if(i>j){ num[i][j] = 0; continue; } if(S.charAt(j-1)!=T.charAt(i-1)) num[i][j] = num[i][j-1]; else { num[i][j] = num[i-1][j-1]+num[i][j-1]; } } } return num[t1][s1]; }c++
用了滚动数组
int numDistinct(string S, string T) { int match[200]; if(S.size()<T.size()) return 0; match[0]=1; for(int i=1;i<=T.size();i++) match[i] = 0; for(int i=1;i<=S.size();i++){ for(int j=T.size();j>=1;j--){ if(S[i-1] == T[j-1]) match[j]+=match[j-1]; } } return match[T.size()]; }