转自 mian zhou
/*************************************************************************** * Copyright (C) 2006 by Mian Zhou * * [email protected] * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ***************************************************************************/ #ifndef CVGABOR_H #define CVGABOR_H #include <iostream> #include <cv.h> #include <highgui.h> #define PI 3.14159265 #define CV_GABOR_REAL 1 #define CV_GABOR_IMAG 2 #define CV_GABOR_MAG 3 #define CV_GABOR_PHASE 4 /** @author Mian Zhou */ class CvGabor{ public: CvGabor(); ~CvGabor(); CvGabor(int iMu, int iNu); CvGabor(int iMu, int iNu, double dSigma); CvGabor(int iMu, int iNu, double dSigma, double dF); CvGabor(double dPhi, int iNu); CvGabor(double dPhi, int iNu, double dSigma); CvGabor(double dPhi, int iNu, double dSigma, double dF); bool IsInit(); long mask_width(); IplImage* get_image(int Type); bool IsKernelCreate(); long get_mask_width(); void Init(int iMu, int iNu, double dSigma, double dF); void Init(double dPhi, int iNu, double dSigma, double dF); void output_file(const char *filename, int Type); CvMat* get_matrix(int Type); void show(int Type); void conv_img(IplImage *src, IplImage *dst, int Type); void normalize( const CvArr* src, CvArr* dst, double a, double b, int norm_type, const CvArr* mask ); void conv_img_a(IplImage *src, IplImage *dst, int Type); protected: double Sigma; double F; double Kmax; double K; double Phi; bool bInitialised; bool bKernel; long Width; CvMat *Imag; CvMat *Real; private: void creat_kernel(); }; #endif
/*************************************************************************** * Copyright (C) 2006 by Mian Zhou * * [email protected] * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ***************************************************************************/ #include "stdafx.h" #include "cvgabor.h" CvGabor::CvGabor() { } CvGabor::~CvGabor() { cvReleaseMat( &Real ); cvReleaseMat( &Imag ); } /*! \fn CvGabor::CvGabor(int iMu, int iNu, double dSigma) Construct a gabor Parameters: iMu The orientation iMu*PI/8, iNu The scale, dSigma The sigma value of Gabor, Returns: None Create a gabor with a orientation iMu*PI/8, a scale iNu, and a sigma value dSigma. The spatial frequence (F) is set to sqrt(2) defaultly. It calls Init() to generate parameters and kernels. */ CvGabor::CvGabor(int iMu, int iNu, double dSigma) { F = sqrt(2.0); Init(iMu, iNu, dSigma, F); } /*! \fn CvGabor::CvGabor(int iMu, int iNu, double dSigma, double dF) Construct a gabor Parameters: iMu The orientation iMu*PI/8 iNu The scale dSigma The sigma value of Gabor dF The spatial frequency Returns: None Create a gabor with a orientation iMu*PI/8, a scale iNu, a sigma value dSigma, and a spatial frequence dF. It calls Init() to generate parameters and kernels. */ CvGabor::CvGabor(int iMu, int iNu, double dSigma, double dF) { Init(iMu, iNu, dSigma, dF); } /*! \fn CvGabor::CvGabor(double dPhi, int iNu) Construct a gabor Parameters: dPhi The orientation in arc iNu The scale Returns: None Create a gabor with a orientation dPhi, and with a scale iNu. The sigma (Sigma) and the spatial frequence (F) are set to 2*PI and sqrt(2) defaultly. It calls Init() to generate parameters and kernels. */ CvGabor::CvGabor(double dPhi, int iNu) { Sigma = 2*PI; F = sqrt(2.0); Init(dPhi, iNu, Sigma, F); } /*! \fn CvGabor::CvGabor(double dPhi, int iNu, double dSigma) Construct a gabor Parameters: dPhi The orientation in arc iNu The scale dSigma The sigma value of Gabor Returns: None Create a gabor with a orientation dPhi, a scale iNu, and a sigma value dSigma. The spatial frequence (F) is set to sqrt(2) defaultly. It calls Init() to generate parameters and kernels. */ //CvGabor::CvGabor(double dPhi, int iNu, double dSigma) //{ // // F = sqrt(2); // Init(dPhi, iNu, dSigma, F); //} /*! \fn CvGabor::CvGabor(double dPhi, int iNu, double dSigma, double dF) Construct a gabor Parameters: dPhi The orientation in arc iNu The scale dSigma The sigma value of Gabor dF The spatial frequency Returns: None Create a gabor with a orientation dPhi, a scale iNu, a sigma value dSigma, and a spatial frequence dF. It calls Init() to generate parameters and kernels. */ CvGabor::CvGabor(double dPhi, int iNu, double dSigma, double dF) { Init(dPhi, iNu, dSigma,dF); } /*! \fn CvGabor::IsInit() Determine the gabor is initilised or not Parameters: None Returns: a boolean value, TRUE is initilised or FALSE is non-initilised. Determine whether the gabor has been initlized - variables F, K, Kmax, Phi, Sigma are filled. */ bool CvGabor::IsInit() { return bInitialised; } /*! \fn CvGabor::mask_width() Give out the width of the mask Parameters: None Returns: The long type show the width. Return the width of mask (should be NxN) by the value of Sigma and iNu. */ long CvGabor::mask_width() { long lWidth; if (IsInit() == false) { perror ("Error: The Object has not been initilised in mask_width()!\n"); return 0; } else { //determine the width of Mask double dModSigma = Sigma/K; double dWidth = cvRound(dModSigma*6 + 1); //test whether dWidth is an odd. if (fmod(dWidth, 2.0)==0.0) { dWidth++; } lWidth = (long)dWidth; return lWidth; } } /*! \fn CvGabor::creat_kernel() Create gabor kernel Parameters: None Returns: None Create 2 gabor kernels - REAL and IMAG, with an orientation and a scale */ void CvGabor::creat_kernel() { if (IsInit() == false) { perror("Error: The Object has not been initilised in creat_kernel()!\n"); } else { CvMat *mReal, *mImag; mReal = cvCreateMat( Width, Width, CV_32FC1); mImag = cvCreateMat( Width, Width, CV_32FC1); /**************************** Gabor Function ****************************/ int x, y; double dReal; double dImag; double dTemp1, dTemp2, dTemp3; for (int i = 0; i < Width; i++) { for (int j = 0; j < Width; j++) { x = i-(Width-1)/2; y = j-(Width-1)/2; dTemp1 = (pow(K,2)/pow(Sigma,2))*exp(-(pow((double)x,2)+pow((double)y,2))*pow(K,2)/(2*pow(Sigma,2))); dTemp2 = cos(K*cos(Phi)*x + K*sin(Phi)*y) - exp(-(pow(Sigma,2)/2)); dTemp3 = sin(K*cos(Phi)*x + K*sin(Phi)*y); dReal = dTemp1*dTemp2; dImag = dTemp1*dTemp3; //gan_mat_set_el(pmReal, i, j, dReal); //cvmSet( (CvMat*)mReal, i, j, dReal ); cvSetReal2D((CvMat*)mReal, i, j, dReal ); //gan_mat_set_el(pmImag, i, j, dImag); //cvmSet( (CvMat*)mImag, i, j, dImag ); cvSetReal2D((CvMat*)mImag, i, j, dImag ); } } /**************************** Gabor Function ****************************/ bKernel = true; cvCopy(mReal, Real, NULL); cvCopy(mImag, Imag, NULL); //printf("A %d x %d Gabor kernel with %f PI in arc is created.\n", Width, Width, Phi/PI); cvReleaseMat( &mReal ); cvReleaseMat( &mImag ); } } /*! \fn CvGabor::get_image(int Type) Get the speific type of image of Gabor Parameters: Type The Type of gabor kernel, e.g. REAL, IMAG, MAG, PHASE Returns: Pointer to image structure, or NULL on failure Return an Image (gandalf image class) with a specific Type "REAL" "IMAG" "MAG" "PHASE" */ IplImage* CvGabor::get_image(int Type) { if(IsKernelCreate() == false) { perror("Error: the Gabor kernel has not been created in get_image()!\n"); return NULL; } else { IplImage* pImage; IplImage *newimage; newimage = cvCreateImage(cvSize(Width,Width), IPL_DEPTH_8U, 1 ); //printf("Width is %d.\n",(int)Width); //printf("Sigma is %f.\n", Sigma); //printf("F is %f.\n", F); //printf("Phi is %f.\n", Phi); //pImage = gan_image_alloc_gl_d(Width, Width); pImage = cvCreateImage( cvSize(Width,Width), IPL_DEPTH_32F, 1 ); CvMat* kernel = cvCreateMat(Width, Width, CV_32FC1); double ve; CvScalar S; CvSize size = cvGetSize( kernel ); int rows = size.height; int cols = size.width; switch(Type) { case 1: //Real cvCopy( (CvMat*)Real, (CvMat*)kernel, NULL ); //pImage = cvGetImage( (CvMat*)kernel, pImageGL ); cvConvert(kernel,pImage); //for (int i = 0; i < rows; i++) // { // for (int j = 0; j < cols; j++) // { // ve = cvGetReal2D((CvMat*)kernel, i, j); // cvSetReal2D( (IplImage*)pImage, j, i, ve ); // } // } break; case 2: //Imag cvCopy( (CvMat*)Imag, (CvMat*)kernel, NULL ); //pImage = cvGetImage( (CvMat*)kernel, pImageGL ); cvConvert(kernel,pImage); // for (int i = 0; i < rows; i++) //{ // for (int j = 0; j < cols; j++) // { // ve = cvGetReal2D((CvMat*)kernel, i, j); // cvSetReal2D( (IplImage*)pImage, j, i, ve ); // } // } break; case 3: //Magnitude ///@todo break; case 4: //Phase ///@todo break; } cvNormalize((IplImage*)pImage, (IplImage*)pImage, 0, 255, CV_MINMAX, NULL ); cvConvertScaleAbs( (IplImage*)pImage, (IplImage*)newimage, 1, 0 ); cvReleaseMat(&kernel); cvReleaseImage(&pImage); return newimage; } } /*! \fn CvGabor::IsKernelCreate() Determine the gabor kernel is created or not Parameters: None Returns: a boolean value, TRUE is created or FALSE is non-created. Determine whether a gabor kernel is created. */ bool CvGabor::IsKernelCreate() { return bKernel; } /*! \fn CvGabor::get_mask_width() Reads the width of Mask Parameters: None Returns: Pointer to long type width of mask. */ long CvGabor::get_mask_width() { return Width; } /*! \fn CvGabor::Init(int iMu, int iNu, double dSigma, double dF) Initilize the.gabor Parameters: iMu The orientations which is iMu*PI.8 iNu The scale can be from -5 to infinit dSigma The Sigma value of gabor, Normally set to 2*PI dF The spatial frequence , normally is sqrt(2) Returns: Initilize the.gabor with the orientation iMu, the scale iNu, the sigma dSigma, the frequency dF, it will call the function creat_kernel(); So a gabor is created. */ void CvGabor::Init(int iMu, int iNu, double dSigma, double dF) { //Initilise the parameters bInitialised = false; bKernel = false; Sigma = dSigma; F = dF; Kmax = PI/2; // Absolute value of K K = Kmax / pow(F, (double)iNu);// Phi = PI*iMu/8; bInitialised = true; Width = mask_width(); Real = cvCreateMat( Width, Width, CV_32FC1); Imag = cvCreateMat( Width, Width, CV_32FC1); creat_kernel(); } /*! \fn CvGabor::Init(double dPhi, int iNu, double dSigma, double dF) Initilize the.gabor Parameters: dPhi The orientations iNu The scale can be from -5 to infinit dSigma The Sigma value of gabor, Normally set to 2*PI dF The spatial frequence , normally is sqrt(2) Returns: None Initilize the.gabor with the orientation dPhi, the scale iNu, the sigma dSigma, the frequency dF, it will call the function creat_kernel(); So a gabor is created.filename The name of the image file file_format The format of the file, e.g. GAN_PNG_FORMAT image The image structure to be written to the file octrlstr Format-dependent control structure */ void CvGabor::Init(double dPhi, int iNu, double dSigma, double dF) { bInitialised = false; bKernel = false; Sigma = dSigma; F = dF; Kmax = PI/2; // Absolute value of K K = Kmax / pow(F, (double)iNu); Phi = dPhi; bInitialised = true; Width = mask_width(); Real = cvCreateMat( Width, Width, CV_32FC1); Imag = cvCreateMat( Width, Width, CV_32FC1); creat_kernel(); } /*! \fn CvGabor::get_matrix(int Type) Get a matrix by the type of kernel Parameters: Type The type of kernel, e.g. REAL, IMAG, MAG, PHASE Returns: Pointer to matrix structure, or NULL on failure. Return the gabor kernel. */ CvMat* CvGabor::get_matrix(int Type) { if (!IsKernelCreate()) {perror("Error: the gabor kernel has not been created!\n"); return NULL;} switch (Type) { case CV_GABOR_REAL: return Real; break; case CV_GABOR_IMAG: return Imag; break; case CV_GABOR_MAG: return NULL; break; case CV_GABOR_PHASE: return NULL; break; } } /*! \fn CvGabor::output_file(const char *filename, Gan_ImageFileFormat file_format, int Type) Writes a gabor kernel as an image file. Parameters: filename The name of the image file file_format The format of the file, e.g. GAN_PNG_FORMAT Type The Type of gabor kernel, e.g. REAL, IMAG, MAG, PHASE Returns: None Writes an image from the provided image structure into the given file and the type of gabor kernel. */ void CvGabor::output_file(const char *filename, int Type) { IplImage *pImage; pImage = get_image(Type); if(pImage != NULL) { if( cvSaveImage(filename, pImage )) printf("%s has been written successfully!\n", filename); else printf("Error: writting %s has failed!\n", filename); } else perror("Error: the image is empty in output_file()!\n"); cvReleaseImage(&pImage); } /*! \fn CvGabor::show(int Type) */ void CvGabor::show(int Type) { if(!IsInit()) { perror("Error: the gabor kernel has not been created!\n"); } else { // IplImage *pImage; //pImage = get_image(Type); //cvNamedWindow("Testing",1); //cvShowImage("Testing",pImage); //cvWaitKey(0); //cvDestroyWindow("Testing"); //cvReleaseImage(&pImage); } } /*! \fn CvGabor::conv_img_a(IplImage *src, IplImage *dst, int Type) */ void CvGabor::conv_img_a(IplImage *src, IplImage *dst, int Type) { double ve, re,im; int width = src->width; int height = src->height; CvMat *mat = cvCreateMat(src->width, src->height, CV_32FC1); for (int i = 0; i < width; i++) { for (int j = 0; j < height; j++) { ve = cvGetReal2D((IplImage*)src, j, i); cvSetReal2D( (CvMat*)mat, i, j, ve ); } } CvMat *rmat = cvCreateMat(width, height, CV_32FC1); CvMat *imat = cvCreateMat(width, height, CV_32FC1); CvMat *kernel = cvCreateMat( Width, Width, CV_32FC1 ); switch (Type) { case CV_GABOR_REAL: cvCopy( (CvMat*)Real, (CvMat*)kernel, NULL ); cvFilter2D( (CvMat*)mat, (CvMat*)mat, (CvMat*)kernel, cvPoint( (Width-1)/2, (Width-1)/2)); break; case CV_GABOR_IMAG: cvCopy( (CvMat*)Imag, (CvMat*)kernel, NULL ); cvFilter2D( (CvMat*)mat, (CvMat*)mat, (CvMat*)kernel, cvPoint( (Width-1)/2, (Width-1)/2)); break; case CV_GABOR_MAG: /* Real Response */ cvCopy( (CvMat*)Real, (CvMat*)kernel, NULL ); cvFilter2D( (CvMat*)mat, (CvMat*)rmat, (CvMat*)kernel, cvPoint( (Width-1)/2, (Width-1)/2)); /* Imag Response */ cvCopy( (CvMat*)Imag, (CvMat*)kernel, NULL ); cvFilter2D( (CvMat*)mat, (CvMat*)imat, (CvMat*)kernel, cvPoint( (Width-1)/2, (Width-1)/2)); /* Magnitude response is the square root of the sum of the square of real response and imaginary response */ for (int i = 0; i < width; i++) { for (int j = 0; j < height; j++) { re = cvGetReal2D((CvMat*)rmat, i, j); im = cvGetReal2D((CvMat*)imat, i, j); ve = sqrt(re*re + im*im); cvSetReal2D( (CvMat*)mat, i, j, ve ); } } break; case CV_GABOR_PHASE: break; } if (dst->depth == IPL_DEPTH_8U) { cvNormalize((CvMat*)mat, (CvMat*)mat, 0, 255, CV_MINMAX, NULL); for (int i = 0; i < width; i++) { for (int j = 0; j < height; j++) { ve = cvGetReal2D((CvMat*)mat, i, j); ve = cvRound(ve); cvSetReal2D( (IplImage*)dst, j, i, ve ); } } } if (dst->depth == IPL_DEPTH_32F) { for (int i = 0; i < width; i++) { for (int j = 0; j < height; j++) { ve = cvGetReal2D((CvMat*)mat, i, j); cvSetReal2D( (IplImage*)dst, j, i, ve ); } } } cvReleaseMat(&kernel); cvReleaseMat(&imat); cvReleaseMat(&rmat); cvReleaseMat(&mat); } /*! \fn CvGabor::CvGabor(int iMu, int iNu) */ CvGabor::CvGabor(int iMu, int iNu) { double dSigma = 2*PI; F = sqrt(2.0); Init(iMu, iNu, dSigma, F); } /*! \fn CvGabor::normalize( const CvArr* src, CvArr* dst, double a, double b, int norm_type, const CvArr* mask ) */ void CvGabor::normalize( const CvArr* src, CvArr* dst, double a, double b, int norm_type, const CvArr* mask ) { CvMat* tmp = 0; /* __BEGIN__;*/ double scale, shift; if( norm_type == CV_MINMAX ) { double smin = 0, smax = 0; double dmin = MIN( a, b ), dmax = MAX( a, b ); cvMinMaxLoc( src, &smin, &smax, 0, 0, mask ); scale = (dmax - dmin)*(smax - smin > DBL_EPSILON ? 1./(smax - smin) : 0); shift = dmin - smin*scale; } else if( norm_type == CV_L2 || norm_type == CV_L1 || norm_type == CV_C ) { CvMat *s = (CvMat*)src, *d = (CvMat*)dst; scale = cvNorm( src, 0, norm_type, mask ); scale = scale > DBL_EPSILON ? 1./scale : 0.; shift = 0; } else {} if( !mask ) cvConvertScale( src, dst, scale, shift ); else { CvMat stub, *dmat; cvConvertScale( src, tmp, scale, shift ); cvCopy( tmp, dst, mask ); } /*__END__;*/ if( tmp ) cvReleaseMat( &tmp ); } /*! \fn CvGabor::conv_img(IplImage *src, IplImage *dst, int Type) */ void CvGabor::conv_img(IplImage *src, IplImage *dst, int Type) { double ve, re,im; CvMat *mat = cvCreateMat(src->width, src->height, CV_32FC1); for (int i = 0; i < src->width; i++) { for (int j = 0; j < src->height; j++) { ve = CV_IMAGE_ELEM(src, uchar, j, i); CV_MAT_ELEM(*mat, float, i, j) = (float)ve; } } CvMat *rmat = cvCreateMat(src->width, src->height, CV_32FC1); CvMat *imat = cvCreateMat(src->width, src->height, CV_32FC1); switch (Type) { case CV_GABOR_REAL: cvFilter2D( (CvMat*)mat, (CvMat*)mat, (CvMat*)Real, cvPoint( (Width-1)/2, (Width-1)/2)); break; case CV_GABOR_IMAG: cvFilter2D( (CvMat*)mat, (CvMat*)mat, (CvMat*)Imag, cvPoint( (Width-1)/2, (Width-1)/2)); break; case CV_GABOR_MAG: cvFilter2D( (CvMat*)mat, (CvMat*)rmat, (CvMat*)Real, cvPoint( (Width-1)/2, (Width-1)/2)); cvFilter2D( (CvMat*)mat, (CvMat*)imat, (CvMat*)Imag, cvPoint( (Width-1)/2, (Width-1)/2)); cvPow(rmat,rmat,2); cvPow(imat,imat,2); cvAdd(imat,rmat,mat); cvPow(mat,mat,0.5); break; case CV_GABOR_PHASE: break; } if (dst->depth == IPL_DEPTH_8U) { cvNormalize((CvMat*)mat, (CvMat*)mat, 0, 255, CV_MINMAX); for (int i = 0; i < mat->rows; i++) { for (int j = 0; j < mat->cols; j++) { ve = CV_MAT_ELEM(*mat, float, i, j); CV_IMAGE_ELEM(dst, uchar, j, i) = (uchar)cvRound(ve); } } } if (dst->depth == IPL_DEPTH_32F) { for (int i = 0; i < mat->rows; i++) { for (int j = 0; j < mat->cols; j++) { ve = cvGetReal2D((CvMat*)mat, i, j); cvSetReal2D( (IplImage*)dst, j, i, ve ); } } } cvReleaseMat(&imat); cvReleaseMat(&rmat); cvReleaseMat(&mat); }