上图是Spark Standalone Cluster中计算模块的简要示意,从中可以看出整个Cluster主要由四种不同的JVM组成
换个角度来说,Master对资源的管理是在进程级别,而SchedulerBackend则是在线程的级别。
启动时序图(重点,对理解spark很有帮助)
YARN的基本架构如上图所示,由三大功能模块组成,分别是1) RM (ResourceManager) 2) NM (Node Manager) 3) AM(Application Master)
上述说了一大堆,说白了在编写YARN Application时,主要是实现Client和ApplicatonMaster。实例请参考github上的simple-yarn-app.
结合Spark Standalone的部署模式和YARN编程模型的要求,做了一张表来显示Spark Standalone和Spark on Yarn的对比。
Standalone | YARN | Notes |
---|---|---|
Client | Client | standalone请参考spark.deploy目录 |
Master | ApplicationMaster | |
Worker | ExecutorRunnable | |
Scheduler | YarnClusterScheduler | |
SchedulerBackend | YarnClusterSchedulerBackend |
作上述表格的目的就是要搞清楚为什么需要做这些更改,与之前Standalone模式间的对应关系是什么。代码走读时,分析的重点是ApplicationMaster, YarnClusterSchedulerBackend和YarnClusterScheduler
一般来说,在Client中会显示的指定启动ApplicationMaster的类名,如下面的代码所示
ContainerLaunchContext amContainer =
Records.newRecord(ContainerLaunchContext.class);
amContainer.setCommands(
Collections.singletonList(
"$JAVA_HOME/bin/java" +
" -Xmx256M" +
" com.hortonworks.simpleyarnapp.ApplicationMaster" +
" " + command +
" " + String.valueOf(n) +
" 1>" + ApplicationConstants.LOG_DIR_EXPANSION_VAR + "/stdout" +
" 2>" + ApplicationConstants.LOG_DIR_EXPANSION_VAR + "/stderr"
)
);
但在yarn.Client中并没有直接指定ApplicationMaster的类名,是通过ClientArguments进行了封装,真正指定启动类的名称的地方在ClientArguments中。构造函数中指定了amClass的默认值是org.apache.spark.deploy.yarn.ApplicationMaster
将SparkPi部署到Yarn上,下述是具体指令。
$ SPARK_JAR=./assembly/target/scala-2.10/spark-assembly-0.9.1-hadoop2.0.5-alpha.jar \
./bin/spark-class org.apache.spark.deploy.yarn.Client \
--jar examples/target/scala-2.10/spark-examples-assembly-0.9.1.jar \
--class org.apache.spark.examples.SparkPi \
--args yarn-standalone \
--num-workers 3 \
--master-memory 4g \
--worker-memory 2g \
--worker-cores 1
从输出的日志可以看出, Client在提交的时候,AM指定的是org.apache.spark.deploy.yarn.ApplicationMaster
13/12/29 23:33:25 INFO Client: Command for starting the Spark ApplicationMaster: $JAVA_HOME/bin/java -server -Xmx4096m -Djava.io.tmpdir=$PWD/tmp org.apache.spark.deploy.yarn.ApplicationMaster --class org.apache.spark.examples.SparkPi --jar examples/target/scala-2.9.3/spark-examples-assembly-0.8.1-incubating.jar --args 'yarn-standalone' --worker-memory 2048 --worker-cores 1 --num-workers 3 1> /stdout 2> /stderr
spark在提交时,所做的资源申请是一次性完成的,也就是说对某一个具体的Application,它所需要的Executor个数是一开始就是计算好,整个Cluster如果此时能够满足需求则提交,否则进行等待。而且如果有新的结点加入整个cluster,已经运行着的程序并不能使用这些新的资源。缺少rebalance的机制,这点上storm倒是有。