题目链接: https://leetcode.com/problems/3sum-smaller/
Given an array of n integers nums and a target, find the number of index triplets i, j, k
with 0 <= i < j < k < n
that satisfy the condition nums[i] + nums[j] + nums[k] < target
.
For example, given nums = [-2, 0, 1, 3]
, and target = 2.
Return 2. Because there are two triplets which sums are less than 2:
[-2, 0, 1] [-2, 0, 3]
Follow up:
Could you solve it in O(n2) runtime?
思路:首先对数组进行排序. 然后同样是先确定一位, 然后双指针一个在最左边, 一个在最右边. 如果三个数的和小于target, 那么在右指针之前的左指针之后的数肯定也是可以的. 注意到这个之后就可以很容易得到答案. 时间复杂度O(N^2).
代码如下:
class Solution { public: int threeSumSmaller(vector<int>& nums, int target) { int cnt = 0, len = nums.size(); sort(nums.begin(), nums.end()); for(int i = 0; i< len-2; i++) { int left = i+1, right = len -1; while(left < right) { int val = nums[i]+nums[left]+nums[right]; if(val < target) { cnt+= (right-left); left++; } else right--; } } return cnt; } };