"If you have an apple and I have an apple and we exchange these apples then you and I will still each have one apple. But if you have an idea and I have an idea and we exchange these ideas, then each of us will have two ideas." - George Bernard Shaw
Now Alice has A apples and B ideas, while Bob has C apples and D ideas, what will they have if they exchange all things?
There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:
The only line contains four integers A, B, C, D (0 <= A, B, C, D <= 100) - as the problem described.
For each test case, output two lines. First line contains two integers, indicating the number of Alice's apples and ideas; second line contains two integers, indicating the number of Bob's apples and ideas.
4 0 0 5 30 20 25 20 0 20 25 20 15 20 25 25 30
5 30 0 30 20 25 20 25 20 40 20 40 25 55 20 55Author: DAI, Longao
#include<stdio.h> #include<iostream> #include<string.h> #include<string> #include<ctype.h> #include<math.h> #include<set> #include<map> #include<vector> #include<queue> #include<bitset> #include<algorithm> #include<time.h> using namespace std; void fre() { freopen("c://test//input.in", "r", stdin); freopen("c://test//output.out", "w", stdout); } #define MS(x,y) memset(x,y,sizeof(x)) #define MC(x,y) memcpy(x,y,sizeof(x)) #define MP(x,y) make_pair(x,y) #define ls o<<1 #define rs o<<1|1 typedef long long LL; typedef unsigned long long UL; typedef unsigned int UI; template <class T1, class T2>inline void gmax(T1 &a, T2 b) { if (b>a)a = b; } template <class T1, class T2>inline void gmin(T1 &a, T2 b) { if (b<a)a = b; } const int N = 0, M = 0, Z = 1e9 + 7, ms63 = 0x3f3f3f3f; int casenum, casei; int a, b, c, d; int main() { scanf("%d", &casenum); for (casei = 1; casei <= casenum; ++casei) { scanf("%d%d%d%d", &a, &b, &c, &d); printf("%d %d\n%d %d\n", c, b + d, a, b + d); } return 0; }