BNUoj Rectangle 在矩形中查找矩形的种类

E. Rectangle

Time Limit: 1000ms
Memory Limit: 65536KB
64-bit integer IO format: %lld      Java class name: Main
Submit Status
frog has a piece of paper divided into \(n\) rows and \(m\) columns. Today, she would like to draw a rectangle whose perimeter is not greater than \(k\).
 
 
There are \(8\) (out of \(9\)) ways when \(n = m = 2, k = 6\)
 
Find the number of ways of drawing.

Input

The input consists of multiple tests. For each test:
 
The first line contains \(3\) integer \(n, m, k\) (\(1 \leq n, m \leq 5 \cdot 10^4, 0 \leq k \leq 10^9\)).

Output

For each test, write \(1\) integer which denotes the number of ways of drawing.

Sample Input

2 2 6
1 1 0
50000 50000 1000000000

Sample Output

8
0
1562562500625000000

Submit Status


超时的算法

#include<iostream>
#include<cstdio>
#include<cstring>

using namespace std;

int main()
{
    int n,m,k;
    while(~scanf("%d%d%d",&n,&m,&k))
    {
		k/=2;
		long long sum=0;
		for(int i=1;;i++)
		{
			if(i>=k||i>n)
				break;
			for(int j=1;;j++)
			{
				if(j>=k||j>m||j+i>k)
				break;
				sum+=(n-i+1)*(m-j+1);   
			}
		}
		printf("%lld\n",sum);
    }
}

根据等差公式优化成O(n)的时间复杂度

#include<iostream>
#include<cstdio>
#include<cstring>

using namespace std;

int main()
{
    long long int n,m,k;
    while(~scanf("%lld%lld%lld",&n,&m,&k))
    {
		k/=2;
		long long sum=0;
		if(k>n+m)
			k=n+m;
		for(long long i=1;;i++)
		{
			if(i>=k||i>n)
			break;
			if(k-i>=m)
			{sum+=(((m+1)*m/2)*(n-i+1));   //等差公式 ,从m+....+1
  
			}
			else
			{sum+=(((2*m-k+i+1)*(k-i)/2)*(n-i+1));    //等差公式,从m+..+(m-(k-i)+1)<span id="transmark"></span>
			}
		}
		printf("%lld\n",sum);
    }
}

你可能感兴趣的:(BNUoj Rectangle 在矩形中查找矩形的种类)