poj 2506 递推+Java大数

Description

In how many ways can you tile a 2xn rectangle by 2x1 or 2x2 tiles?
Here is a sample tiling of a 2x17 rectangle.

Input

Input is a sequence of lines, each line containing an integer number 0 <= n <= 250.

Output

For each line of input, output one integer number in a separate line giving the number of possible tilings of a 2xn rectangle.

Sample Input

2
8
12
100
200

Sample Output

3
171
2731
845100400152152934331135470251
1071292029505993517027974728227441735014801995855195223534251

分析:

题目大意就是有2×1和2×2两种规格的地板,现要拼2×n的形状,共有多少种情况,首先要做这道题目要先对递推有一定的了解。
假设我们已经铺好了2×(n-1)的情形,则要铺到2×n则只能用2×1的地板
假设我们已经铺好了2×(n-2)的情形,则要铺到2×n则可以选择1个2×2或两个2×1,故可能有下列三种铺法

    

其中要注意到第三个会与铺好2×(n-1)的情况重复,故不可取,故可以得到递推式

a[i]=2*a[i-2]+a[i-1];

有了递推公式,直接用java大数做就好:


import java.io.*;
import java.math.*;
import java.util.*;
public class Main{
	static public void main(String[] args) {
		
		Scanner cin=new Scanner(new BufferedInputStream(System.in));
		BigInteger [] a=new BigInteger[255];
		a[0]=a[1]=BigInteger.ONE;
		a[2]=a[1].add(a[0].add(a[0]));
		for(int i=3;i<252;i++){
			a[i]=a[i-1].add(a[i-2].add(a[i-2]));
		}
		int n;
		while(cin.hasNext()){
			n=cin.nextInt();
			System.out.println(a[n]);
		}
	}
}




你可能感兴趣的:(poj 2506 递推+Java大数)