Intervals
Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 24303 Accepted: 9237
Description
You are given n closed, integer(整数) intervals [ai, bi] and n integers c1, ..., cn.
Write a program that:
reads the number of intervals, their end points and integers c1, ..., cn from the standard input(投入),
computes the minimal(最低的) size of a set Z of integers which has at least ci common elements(基础) with
interval [ai, bi], for each i=1,2,...,n,
writes the answer to the standard output(输出).
Input
The first line of the input(投入) contains an integer(整数) n (1 <= n <= 50000) -- the number of intervals.
The following n lines describe the intervals. The (i+1)-th line of the input contains three integers ai,
bi and ci separated by single spaces and such that 0 <= ai <= bi <= 50000 and 1 <= ci <= bi - ai+1.
Output
The output(输出) contains exactly one integer equal to the minimal(最低的) size of set Z sharing at least
ci elements(基础) with interval [ai, bi], for each i=1,2,...,n.
Sample Input
5
3 7 3
8 10 3
6 8 1
1 3 1
10 11 1
Sample Output
6
题意
n个区间,每个区间有三个数
ai ,bi ,ci 表示在[ai,bi]中 至少有ci个点 ci可以在区间内任意取不重复的点
问? 现在要满足所有区间的自身条件,问最少选多少个点
思路:
Si:那也就是说如果我用Si表示区间[0,i]区间内至少有多少个元素的话
差分约束的思想:可以肯定的是s[bi]-s[ai-1]>=ci; 为什么要ai-1,是因为ai也要选进来
但是这远远不够,因为有很多点依然没有相连接起来(也就是从起点可能根本就还没有到终点的路线),
此时,我们再看看Si的定义,也不难写出0<= Si-Si-1 <=1的限制条件,虽然看上去是没有什么意义的条件,
但是如果你也把它构造出一系列的边的话,这样从起点到终点的最短路也就顺理成章的出现了。
s[i]-s[i-1]<=1 && s[i]-s[i-1]>=0
构造:
s[bi]-s[ai-1]>=ci
s[i-1]-s[i]>=-1
s[i]-s[i-1]>=0
建图
求最长路径
看这位大神的思路,理解的
#include <stdio.h> #include <string.h> #include <algorithm> #include <queue> using namespace std; #define inf 0x3f3f3f3f struct Node { int v; int w; int next; }s[50005*3]; int head[50005]; int dist[50005]; bool vis[50005]; int n,Max,Min,num; void add_edge(int a,int b,int c) { s[num].v = b; s[num].w = c; s[num].next = head[a]; head[a] = num++; } void SPFA() { queue<int> Q; int i; for(i=Min;i<=Max;i++) { dist[i] = -inf; } dist[Min] = 0; vis[Min] = true; Q.push(Min); while(!Q.empty()) { int u = Q.front(); Q.pop(); vis[u] = false; for(i=head[u];i!=-1;i=s[i].next) { int v = s[i].v; int w = s[i].w; if(dist[v]<dist[u]+w) { dist[v] = dist[u] + w; if(!vis[v]) { vis[v] = true; Q.push(v); } } } } } int main() { while(scanf("%d",&n)!=EOF) { int i,j,a,b,c; num = 0; Max = -inf; Min = inf; memset(head,-1,sizeof(head)); for(i=0;i<n;i++) { scanf("%d%d%d",&a,&b,&c); Min = min(Min,a); Max = max(Max,b+1); add_edge(a,b+1,c); } for(i=Min;i<Max;i++) { add_edge(i,i+1,0); add_edge(i+1,i,-1); } SPFA(); printf("%d\n",dist[Max]); } return 0; }