Description
You are given a sequence of n integers a1 , a2 , ... , an in non-decreasing order. In addition to that, you are given several queries consisting of indices i and j (1 ≤ i ≤ j ≤ n). For each query, determine the most frequent value among the integers ai , ... , aj.
Input
The input consists of several test cases. Each test case starts with a line containing two integers n and q (1 ≤ n, q ≤ 100000). The next line contains n integers a1 , ... , an (-100000 ≤ ai ≤ 100000, for each i ∈ {1, ..., n}) separated by spaces. You can assume that for each i ∈ {1, ..., n-1}: ai ≤ ai+1. The following q lines contain one query each, consisting of two integers i and j (1 ≤ i ≤ j ≤ n), which indicate the boundary indices for the
query.
The last test case is followed by a line containing a single 0.
Output
For each query, print one line with one integer: The number of occurrences of the most frequent value within the given range.
Sample Input
10 3 -1 -1 1 1 1 1 3 10 10 10 2 3 1 10 5 10 0
Sample Output
1 4 3
Source
题目大意:给定一个不降序列a1....an,有q个询问,对于每个询问(i,j),输出区间[i,j]中连续相同的数字个数。
此题可以用RMQ解决,只需要对原序列进行O(n)的预处理,得到一个数组num,num[i]=前i个数字中,与第i个数字连续且相同的个数。然后对num数组进行RMQ即可。查询时需要稍微处理一下,因为如果直接把查询区间一分为二的话,中间的分界线可能会把一个连续相同的数字序列分割为二,这样求出来的答案可能比正确答案小。所以查询[L,R]区间时,要从L开始找到一个最大的T,使得[L,T)为一个完整的连续相同数字子序列,则问题的答案就是(T-L)和RMQ[T,R]的最大值
#include <iostream> #include <cstdio> #include <cmath> #include <algorithm> #include <cstring> #define MAXN 100100 #define mem(array,num) memset using namespace std; int n,q,f[MAXN][100],inNum[MAXN],num[MAXN]; //inNum[i]=输入的第i个数,num[i]=直到第i个数,和第i个数相连且相同的数的个数 void ST_RMQ() { int m,k=(int)(log((double)n)/log(2.0)); for(int i=1;i<=n;i++) f[i][0]=num[i]; for(int j=1;j<=k;j++) for(int i=1;i+(1<<j)-1<=n;i++) { m=i+(1<<(j-1)); f[i][j]=max(f[i][j-1],f[m][j-1]); } } int query_RMQ(int l,int r) { if(l>r) return 0; int k=(int)(log((double)(r-l+1))/log(2.0)); return max(f[l][k],f[r-(1<<k)+1][k]); } int main() { while(1) { mem(inNum,0); mem(num,0); mem(f,0); scanf("%d",&n); if(!n) break; scanf("%d",&q); for(int i=1;i<=n;i++) { scanf("%d",&inNum[i]); if(inNum[i]==inNum[i-1]) num[i]=num[i-1]+1; else num[i]=1; } ST_RMQ(); for(int i=1;i<=q;i++) { int L,R,t; scanf("%d%d",&L,&R); t=L; while(inNum[t]==inNum[t-1]&&t<=R) t++; //找到一个分界线t,使得t不分割一段相同且连续的数 printf("%d\n",max(t-L,query_RMQ(t,R))); } } return 0; }