package org.apache.hadoop.examples; import java.io.IOException; import java.math.BigDecimal; import java.util.Iterator; import org.apache.hadoop.conf.Configured; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.BooleanWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.SequenceFile; import org.apache.hadoop.io.Writable; import org.apache.hadoop.io.WritableComparable; import org.apache.hadoop.io.SequenceFile.CompressionType; import org.apache.hadoop.mapred.FileInputFormat; import org.apache.hadoop.mapred.FileOutputFormat; import org.apache.hadoop.mapred.JobClient; import org.apache.hadoop.mapred.JobConf; import org.apache.hadoop.mapred.MapReduceBase; import org.apache.hadoop.mapred.Mapper; import org.apache.hadoop.mapred.OutputCollector; import org.apache.hadoop.mapred.Reducer; import org.apache.hadoop.mapred.Reporter; import org.apache.hadoop.mapred.SequenceFileInputFormat; import org.apache.hadoop.mapred.SequenceFileOutputFormat; import org.apache.hadoop.util.Tool; import org.apache.hadoop.util.ToolRunner; /**hadoop的map/reduce程序例子程序,演示用准蒙特-卡洛方法估算PI 的值。这是欧洲最早计算PI的方法。 在一个单位矩形中,内切一个圆。 往给矩形内投任意次针,记下针在圆内的次数,和投的总次数。 当数据足够多的时候,圆内的次数约等于圆的面积,总次数 约等于单位矩形的面积,在园内次数/总次数=园面积/单位矩形面积=(PI/4)/1 所以PI大概等于4*(园内次数/总次数) * A Map-reduce program to estimate the value of Pi * using quasi-Monte Carlo method. * * Mapper: * Generate points in a unit square * and then count points inside/outside of the inscribed circle of the square. * * Reducer: * Accumulate points inside/outside results from the mappers. * * Let numTotal = numInside + numOutside. * The fraction numInside/numTotal is a rational approximation of * the value (Area of the circle)/(Area of the square), * where the area of the inscribed circle is Pi/4 * and the area of unit square is 1. * Then, Pi is estimated value to be 4(numInside/numTotal). */ public class PiEstimator extends Configured implements Tool { /** tmp directory for input/output */ static private final Path TMP_DIR = new Path( PiEstimator.class.getSimpleName() + "_TMP_3_141592654"); /** 二维哈尔顿序列的类,哈尔顿序列常常用来产生空间点,因为这个序列的数看上去想随机的。可以用任意一个素数做基数,来生成一系列的的序列。比如说以2的基数,产生的哈尔顿序列是:1/2, 1/4, 3/4, 1/8, 5/8, 3/8, 7/8, 1/16, 9/16。 实现的伪代码如下: FUNCTION (index, base) BEGIN result = 0; f = 1 / base; i = index; WHILE (i > 0) BEGIN result = result + f * (i % base); i = FLOOR(i / base); f = f / base; END RETURN result; END 2-dimensional Halton sequence {H(i)}, * where H(i) is a 2-dimensional point and i >= 1 is the index. * Halton sequence is used to generate sample points for Pi estimation. */ private static class HaltonSequence { /** Bases */ static final int[] P = {2, 3}; /** Maximum number of digits allowed */ static final int[] K = {63, 40}; private long index; private double[] x; private double[][] q; private int[][] d; /** Initialize to H(startindex), * so the sequence begins with H(startindex+1). */ HaltonSequence(long startindex) { index = startindex; x = new double[K.length]; q = new double[K.length][]; d = new int[K.length][]; for(int i = 0; i < K.length; i++) { q[i] = new double[K[i]]; d[i] = new int[K[i]]; } for(int i = 0; i < K.length; i++) { long k = index; x[i] = 0; for(int j = 0; j < K[i]; j++) { q[i][j] = (j == 0? 1.0: q[i][j-1])/P[i]; d[i][j] = (int)(k % P[i]); k = (k - d[i][j])/P[i]; x[i] += d[i][j] * q[i][j]; } } } /** 生成下一个随机点 Compute next point. * Assume the current point is H(index). * Compute H(index+1). * * @return a 2-dimensional point with coordinates in [0,1)^2 */ double[] nextPoint() { index++; for(int i = 0; i < K.length; i++) { for(int j = 0; j < K[i]; j++) { d[i][j]++; x[i] += q[i][j]; if (d[i][j] < P[i]) { break; } d[i][j] = 0; x[i] -= (j == 0? 1.0: q[i][j-1]); } } return x; } } /**mapper类 输入是offset从0开始的序列的序号,size 是每个map处理的点的大小 输出 true(圆内),数目;false(圆外),数目 * Mapper class for Pi estimation. * Generate points in a unit square * and then count points inside/outside of the inscribed circle of the square. */ public static class PiMapper extends MapReduceBase implements Mapper<LongWritable, LongWritable, BooleanWritable, LongWritable> { /** Map method. * @param offset samples starting from the (offset+1)th sample. * @param size the number of samples for this map * @param out output {ture->numInside, false->numOutside} * @param reporter */ public void map(LongWritable offset, LongWritable size, OutputCollector<BooleanWritable, LongWritable> out, Reporter reporter) throws IOException { final HaltonSequence haltonsequence = new HaltonSequence(offset.get()); long numInside = 0L; long numOutside = 0L; for(long i = 0; i < size.get(); ) { //generate points in a unit square final double[] point = haltonsequence.nextPoint(); //判断点是否在圆内,并且对在圆内情况和圆外情况计数count points inside/outside of the inscribed circle of the square final double x = point[0] - 0.5; final double y = point[1] - 0.5; if (x*x + y*y > 0.25) { numOutside++; } else { numInside++; } //report status i++; if (i % 1000 == 0) { reporter.setStatus("Generated " + i + " samples."); } } //output map results out.collect(new BooleanWritable(true), new LongWritable(numInside)); out.collect(new BooleanWritable(false), new LongWritable(numOutside)); } } /**reducer类 * Reducer class for Pi estimation. * Accumulate points inside/outside results from the mappers. */ public static class PiReducer extends MapReduceBase implements Reducer<BooleanWritable, LongWritable, WritableComparable<?>, Writable> { private long numInside = 0; //公共变量 private long numOutside = 0;//公共变量 private JobConf conf; //configuration for accessing the file system /**保存job做公共变量,为了方便close方法调用。 Store job configuration. */ @Override public void configure(JobConf job) { conf = job; } /**统计map的总的圆内数目和园外数目 * Accumulate number of points inside/outside results from the mappers. * @param isInside Is the points inside? * @param values An iterator to a list of point counts * @param output dummy, not used here. * @param reporter */ public void reduce(BooleanWritable isInside, Iterator<LongWritable> values, OutputCollector<WritableComparable<?>, Writable> output, Reporter reporter) throws IOException { if (isInside.get()) { for(; values.hasNext(); numInside += values.next().get()); } else { for(; values.hasNext(); numOutside += values.next().get()); } } /**job结束,把圆内数目和圆外数目写到一个文件里 * Reduce task done, write output to a file. */ @Override public void close() throws IOException { //write output to a file Path outDir = new Path(TMP_DIR, "out"); Path outFile = new Path(outDir, "reduce-out"); FileSystem fileSys = FileSystem.get(conf); SequenceFile.Writer writer = SequenceFile.createWriter(fileSys, conf, outFile, LongWritable.class, LongWritable.class, CompressionType.NONE); writer.append(new LongWritable(numInside), new LongWritable(numOutside)); writer.close(); } } /** * Run a map/reduce job for estimating Pi. * * @return the estimated value of Pi */ public static BigDecimal estimate(int numMaps, long numPoints, JobConf jobConf ) throws IOException { //setup job conf jobConf.setJobName(PiEstimator.class.getSimpleName()); //设置job的名字 jobConf.setInputFormat(SequenceFileInputFormat.class); //设置输入格式二进制格式SequenceFileInputFormat jobConf.setOutputKeyClass(BooleanWritable.class);//设置map输出key类型 jobConf.setOutputValueClass(LongWritable.class);//设置map输出value类型 jobConf.setOutputFormat(SequenceFileOutputFormat.class); //设置输出文件是二进制类型SequenceFileOutputFormat jobConf.setMapperClass(PiMapper.class);//设置map类 jobConf.setNumMapTasks(numMaps);//设置map的数目 jobConf.setReducerClass(PiReducer.class);//设置reduce的类 jobConf.setNumReduceTasks(1);//设置只有一个reduce,不然没法做总的数据统计 // turn off speculative execution, because DFS doesn't handle // multiple writers to the same file. jobConf.setSpeculativeExecution(false); //关闭speculative execution属性,因为DFS不能处理多个writers操作同一一个文件 //setup input/output directories建立输入输出目录 final Path inDir = new Path(TMP_DIR, "in"); final Path outDir = new Path(TMP_DIR, "out"); FileInputFormat.setInputPaths(jobConf, inDir); FileOutputFormat.setOutputPath(jobConf, outDir); final FileSystem fs = FileSystem.get(jobConf); if (fs.exists(TMP_DIR)) { throw new IOException("Tmp directory " + fs.makeQualified(TMP_DIR) + " already exists. Please remove it first."); } if (!fs.mkdirs(inDir)) { throw new IOException("Cannot create input directory " + inDir); } /*创建numMaps个文件,文件名是part+ i ,内容之有一个(key,value)对分别是(offset ,size)*/ try { //generate an input file for each map task for(int i=0; i < numMaps; ++i) { final Path file = new Path(inDir, "part"+i); final LongWritable offset = new LongWritable(i * numPoints); final LongWritable size = new LongWritable(numPoints); final SequenceFile.Writer writer = SequenceFile.createWriter( fs, jobConf, file, LongWritable.class, LongWritable.class, CompressionType.NONE); try { writer.append(offset, size); } finally { writer.close(); } System.out.println("Wrote input for Map #"+i); } //start a map/reduce job System.out.println("Starting Job"); final long startTime = System.currentTimeMillis(); JobClient.runJob(jobConf); final double duration = (System.currentTimeMillis() - startTime)/1000.0; System.out.println("Job Finished in " + duration + " seconds"); /*从输出结果文件reduce-out中读取结果圆内数目和圆外数目*/ //read outputs Path inFile = new Path(outDir, "reduce-out"); LongWritable numInside = new LongWritable(); LongWritable numOutside = new LongWritable(); SequenceFile.Reader reader = new SequenceFile.Reader(fs, inFile, jobConf); try { reader.next(numInside, numOutside); } finally { reader.close(); } //算出PI的值:于4*(园内次数/总次数) compute estimated value return BigDecimal.valueOf(4).setScale(20) .multiply(BigDecimal.valueOf(numInside.get())) .divide(BigDecimal.valueOf(numMaps)) .divide(BigDecimal.valueOf(numPoints)); } finally { fs.delete(TMP_DIR, true);//删除临时目录 } } /** * Parse arguments and then runs a map/reduce job. * Print output in standard out. * * @return a non-zero if there is an error. Otherwise, return 0. */ public int run(String[] args) throws Exception { if (args.length != 2) { System.err.println("Usage: "+getClass().getName()+" <nMaps> <nSamples>"); ToolRunner.printGenericCommandUsage(System.err); return -1; } final int nMaps = Integer.parseInt(args[0]); final long nSamples = Long.parseLong(args[1]); System.out.println("Number of Maps = " + nMaps); System.out.println("Samples per Map = " + nSamples); final JobConf jobConf = new JobConf(getConf(), getClass()); System.out.println("Estimated value of Pi is " + estimate(nMaps, nSamples, jobConf)); return 0; } /** * main method for running it as a stand alone command. */ public static void main(String[] argv) throws Exception { System.exit(ToolRunner.run(null, new PiEstimator(), argv)); } }