java集合框架图
简化图:
Java平台提供了一个全新的集合框架。“集合框架”主要由一组用来操作对象的接口组成。不同接口描述一组不同数据类型。
Java 2集合框架图 集合接口:6个接口(短虚线表示),表示不同集合类型,是集合框架的基础。 抽象类:5个抽象类(长虚线表示),对集合接口的部分实现。可扩展为自定义集合类。 实现类:8个实现类(实线表示),对接口的具体实现。 在很大程度上,一旦您理解了接口,您就理解了框架。虽然您总要创建接口特定的实现,但访问实际集合的方法应该限制在接口方法的使用上;因此,允许您更改基本的数据结构而不必改变其它代码。 · Collection 接口是一组允许重复的对象。 · Set 接口继承 Collection,但不允许重复,使用自己内部的一个排列机制。
· List 接口继承 Collection,允许重复,以元素安插的次序来放置元素,不会重新排列。 · Map接口是一组成对的键-值对象,即所持有的是key-value pairs。Map中不能有重复的key。拥有自己的内部排列机制。 · 容器中的元素类型都为Object。从容器取得元素时,必须把它转换成原来的类型。
Java 2简化集合框架图 集合接口 1.Collection 接口 用于表示任何对象或元素组。
想要尽可能以常规方式处理一组元素时,就使用这一接口。 (1) 单元素添加、删除操作:
boolean add(Object o):将对象添加给集合 boolean remove(Object o): 如果集合中有与o相匹配的对象,则删除对象o (2) 查询操作: int size() :返回当前集合中元素的数量 boolean isEmpty() :判断集合中是否有任何元素 boolean contains(Object o) :查找集合中是否含有对象o Iterator iterator() :返回一个迭代器,用来访问集合中的各个元素 (3) 组操作 :作用于元素组或整个集合 boolean containsAll(Collection c): 查找集合中是否含有集合c 中所有元素 boolean addAll(Collection c) : 将集合c 中所有元素添加给该集合 void clear(): 删除集合中所有元素 void removeAll(Collection c) : 从集合中删除集合c 中的所有元素 void retainAll(Collection c) : 从集合中删除集合c 中不包含的元素 (4) Collection转换为Object数组 : Object[] toArray() :返回一个内含集合所有元素的array Object[] toArray(Object[] a) :返回一个内含集合所有元素的array。运行期返回的array和参数a的型别相同,需要转换为正确型别。 此外,您还可以把集合转换成其它任何其它的对象数组。但是,您不能直接把集合转换成基本数据类型的数组,因为集合必须持有对象。 “斜体接口方法是可选的。因为一个接口实现必须实现所有接口方法,调用程序就需要一种途径来知道一个可选的方法是不是不受支持。如果调用一种可选方法 时,一个 UnsupportedOperationException 被抛出,则操作失败,因为方法不受支持。此异常类继承 RuntimeException 类,避免了将所有集合操作放入 try-catch 块。” Collection不提供get()方法。如果要遍历Collectin中的元素,就必须用Iterator。1.1.AbstractCollection 抽象类 AbstractCollection 类提供具体“集合框架”类的基本功能。虽然您可以自行实现 Collection 接口的所有方法,但是,除了iterator()和size()方法在恰当的子类中实现以外,其它所有方法都由 AbstractCollection 类来提供实现。如果子类不覆盖某些方法,可选的如add()之类的方法将抛出异常。
1.2.Iterator 接口 Collection 接口的iterator()方法返回一个 Iterator。Iterator接口方法能以迭代方式逐个访问集合中各个元素,并安全的从Collection 中除去适当的元素。 (1) boolean hasNext(): 判断是否存在另一个可访问的元素 Object next(): 返回要访问的下一个元素。如果到达集合结尾,则抛出NoSuchElementException异常。 (2) void remove(): 删除上次访问返回的对象。本方法必须紧跟在一个元素的访问后执行。如果上次访问后集合已被修改,方法将抛出IllegalStateException。 “Iterator中删除操作对底层Collection也有影响。” 迭代器是 故障快速修复(fail-fast)的。这意味着,当另一个线程修改底层集合的时候,如果您正在用 Iterator 遍历集合,那么,Iterator就会抛出 ConcurrentModificationException (另一种 RuntimeException异常)异常并立刻失败
2.List接口 List 接口继承了 Collection 接口以定义一个允许重复项的有序集合。该接口不但能够对列表的一部分进行处理,还添加了面向位置的操作。
(1) 面向位置的操作包括插入某个元素或 Collection 的功能,还包括获取、除去或更改元素的功能。在 List 中搜索元素可以从列表的头部或尾部开始,如果找到元素,还将报告元素所在的位置 : void add(int index, Object element): 在指定位置index上添加元素element boolean addAll(int index, Collection c): 将集合c的所有元素添加到指定位置index Object get(int index): 返回List中指定位置的元素 int indexOf(Object o): 返回第一个出现元素o的位置,否则返回-1 int lastIndexOf(Object o) :返回最后一个出现元素o的位置,否则返回-1 Object remove(int index) :删除指定位置上的元素 Object set(int index, Object element) :用元素element取代位置index上的元素,并且返回旧的元素 (2) List 接口不但以位置序列迭代的遍历整个列表,还能处理集合的子集: ListIterator listIterator() : 返回一个列表迭代器,用来访问列表中的元素ListIterator listIterator(int index) : 返回一个列表迭代器,用来从指定位置index开始访问列表中的元素 List subList(int fromIndex, int toIndex) :返回从指定位置fromIndex(包含)到toIndex(不包含)范围中各个元素的列表视图 “对子列表的更改(如 add()、remove() 和 set() 调用)对底层 List 也有影响。” 2.1.ListIterator接口 ListIterator 接口继承 Iterator 接口以支持添加或更改底层集合中的元素,还支持双向访问。ListIterator没有当前位置,光标位于调用previous和next方法返回的值之间。一个长度为n的列表,有n+1个有效索引值:
(1) void add(Object o): 将对象o添加到当前位置的前面 void set(Object o): 用对象o替代next或previous方法访问的上一个元素。如果上次调用后列表结构被修改了,那么将抛出IllegalStateException异常。 (2) boolean hasPrevious(): 判断向后迭代时是否有元素可访问 Object previous():返回上一个对象 int nextIndex(): 返回下次调用next方法时将返回的元素的索引 int previousIndex(): 返回下次调用previous方法时将返回的元素的索引 “正常情况下,不用ListIterator改变某次遍历集合元素的方向 — 向前或者向后。虽然在技术上可以实现,但previous() 后立刻调用next(),返回的是同一个元素。把调用 next()和previous()的顺序颠倒一下,结果相同。”
“我们还需要稍微再解释一下 add() 操作。添加一个元素会导致新元素立刻被添加到隐式光标的前面。因此,添加元素后调用 previous() 会返回新元素,而调用 next() 则不起作用,返回添加操作之前的下一个元素。” 2.2.AbstractList和AbstractSequentialList抽象类 有两个抽象的 List 实现类:AbstractList 和 AbstractSequentialList。像 AbstractSet 类一样,它们覆盖了 equals() 和 hashCode() 方法以确保两个相等的集合返回相同的哈希码。若两个列表大小相等且包含顺序相同的相同元素,则这两个列表相等。这里的 hashCode() 实现在 List 接口定义中指定,而在这里实现。 除了equals()和hashCode(),AbstractList和 AbstractSequentialList实现了其余 List 方法的一部分。因为数据的随机访问和顺序访问是分别实现的,使得具体列表实现的创建更为容易。需要定义的一套方法取决于您希望支持的行为。您永远不必亲自 提供的是 iterator方法的实现。 2.3. LinkedList类和ArrayList类 在“集合框架 ”中有两种常规的 List 实现:ArrayList 和 LinkedList。使用两种 List 实现的哪一种取决于您特定的需要。如果要支持随机访问,而不必在除尾部的任何位置插入或除去元素,那么,ArrayList 提供了可选的集合。但如果,您要频繁的从列表的中间位置添加和除去元素,而只要顺序的访问列表元素,那么,LinkedList 实现更好。 “ArrayList 和 LinkedList 都实现 Cloneable 接口,都提供了两个构造函数,一个无参的,一个接受另一个Collection” 2.3.1. LinkedList类
LinkedList类添加了一些处理列表两端元素的方法。 (1) void addFirst(Object o): 将对象o添加到列表的开头 void addLast(Object o):将对象o添加到列表的结尾 (2) Object getFirst(): 返回列表开头的元素
Object getLast(): 返回列表结尾的元素 (3) Object removeFirst(): 删除并且返回列表开头的元素 Object removeLast():删除并且返回列表结尾的元素 (4) LinkedList(): 构建一个空的链接列表 LinkedList(Collection c): 构建一个链接列表,并且添加集合c的所有元素 “使用这些新方法,您就可以轻松的把 LinkedList 当作一个堆栈、队列或其它面向端点的数据结构。” 2.3.2. ArrayList类 ArrayList类封装了一个动态再分配的Object[]数组。每个ArrayList对象有一个capacity。这个capacity表示存储列表中元素的数组的容量。当元素添加到ArrayList时,它的capacity在常量时间内自动增加。 在向一个ArrayList对象添加大量元素的程序中,可使用ensureCapacity方法增加capacity。这可以减少增加重分配的数量。 (1) void ensureCapacity(int minCapacity): 将ArrayList对象容量增加minCapacity (2) void trimToSize(): 整理ArrayList对象容量为列表当前大小。程序可使用这个操作减少ArrayList对象存储空间。 2.3.2.1. RandomAccess接口 一个特征接口。该接口没有任何方法,不过你可以使用该接口来测试某个集合是否支持有效的随机访问。ArrayList和Vector类用于实现该接口3.Set接口 Set 接口继承 Collection 接口,而且它不允许集合中存在重复项,每个具体的 Set 实现类依赖添加的对象的 equals()方法来检查独一性。Set接口没有引入新方法,所以Set就是一个Collection,只不过其行为不同。
3.1. Hash表 Hash表是一种数据结构,用来查找对象。Hash表为每个对象计算出一个整数,称为Hash Code(哈希码)。Hash表是个链接式列表的阵列。每个列表称为一个buckets(哈希表元)。对象位置的计算 index = HashCode % buckets (HashCode为对象哈希码,buckets为哈希表元总数)。 当你添加元素时,有时你会遇到已经填充了元素的哈希表元,这种情况称为Hash Collisions(哈希冲突)。这时,你必须判断该元素是否已经存在于该哈希表中。 如果哈希码是合理地随机分布的,并且哈希表元的数量足够大,那么哈希冲突的数量就会减少。同时,你也可以通过设定一个初始的哈希表元数量来更好地控制哈 希表的运行。初始哈希表元的数量为 buckets = size * 150% + 1 (size为预期元素的数量)。 如果哈希 表中的元素放得太满,就必须进行rehashing(再哈希)。再哈希使哈希表元数增倍,并将原有的对象重新导入新的哈希表元中,而原始的哈希表元被删 除。load factor(加载因子)决定何时要对哈希表进行再哈希。在Java编程语言中,加载因子默认值为0.75,默认哈希表元为101。 3.2. Comparable接口和Comparator接口 在“集合框架”中有两种比较接口:Comparable接口和Comparator接口。像String和Integer等Java内建类实现 Comparable接口以提供一定排序方式,但这样只能实现该接口一次。对于那些没有实现Comparable接口的类、或者自定义的类,您可以通过 Comparator接口来定义您自己的比较方式。 3.2.1. Comparable接口 在java.lang包中,Comparable接口适用于一个类有自然顺序的时候。假定对象集合是同一类型,该接口允许您把集合排序成自然顺序。
3.3. SortedSet接口 “集合框架”提供了个特殊的Set接口:SortedSet,它保持元素的有序顺序。
SortedSet接口为集的视图(子集)和它的两端(即头和尾) 提供了访问方法。当您处理列表的子集时,更改视图会反映到源集。此外,更改源集也会反映在子集上。发生这种情况的原因在于视图由两端的元素而不是下标元素 指定,所以如果您想要一个特殊的高端元素(toElement)在子集中,您必须找到下一个元素。 添加到SortedSet实现类的元素必须实现Comparable接口,否则您必须给它的构造函数提供一个Comparator接口的实现。TreeSet类是它的唯一一份实现。 “因为集必须包含唯一的项,如果添加元素时比较两个元素导致了0返回值(通过Comparable的compareTo()方法或Comparator 的compare()方法),那么新元素就没有添加进去。如果两个元素相等,那还好。但如果它们不相等的话,您接下来就应该修改比较方法,让比较方法和 equals() 的效果一致。” (1) Comparator comparator(): 返回对元素进行排序时使用的比较器,如果使用Comparable接口的compareTo()方法对元素进行比较,则返回null (2) Object first(): 返回有序集合中第一个(最低)元素 (3) Object last(): 返回有序集合中最后一个(最高)元素 (4) SortedSet subSet(Object fromElement, Object toElement): 返回从fromElement(包括)至toElement(不包括)范围内元素的SortedSet视图(子集) (5) SortedSet headSet(Object toElement): 返回SortedSet的一个视图,其内各元素皆小于toElement (6) SortedSet tailSet(Object fromElement): 返回SortedSet的一个视图,其内各元素皆大于或等于fromElement
3.4. AbstractSet抽象类 AbstractSet类覆盖了Object类的equals()和hashCode()方法,以确保两个相等的集返回相同的哈希码。若两个集大小相等 且包含相同元素,则这两个集相等。按定义,集的哈希码是集中元素哈希码的总和。因此,不论集的内部顺序如何,两个相等的集会有相同的哈希码。 3.4.1. Object类 (1) boolean equals(Object obj): 对两个对象进行比较,以便确定它们是否相同 (2) int hashCode(): 返回该对象的哈希码。相同的对象必须返回相同的哈希码 3.5. HashSet类类和TreeSet类 “集合框架”支持Set接口两种普通的实现:HashSet和TreeSet(TreeSet实现SortedSet接口)。在更多情况下,您会使用 HashSet 存储重复自由的集合。考虑到效率,添加到 HashSet 的对象需要采用恰当分配哈希码的方式来实现hashCode()方法。虽然大多数系统类覆盖了 Object中缺省的hashCode()和equals()实现,但创建您自己的要添加到HashSet的类时,别忘了覆盖 hashCode()和equals()。 当您要从集合中以有序的方式插入和抽取元素时,TreeSet实现会有用处。为了能顺利进行,添加到TreeSet的元素必须是可排序的。 3.5.1.HashSet类 (1) HashSet(): 构建一个空的哈希集 (2) HashSet(Collection c): 构建一个哈希集,并且添加集合c中所有元素 (3) HashSet(int initialCapacity): 构建一个拥有特定容量的空哈希集 (4) HashSet(int initialCapacity, float loadFactor): 构建一个拥有特定容量和加载因子的空哈希集。LoadFactor是0.0至1.0之间的一个数 3.5.2. TreeSet类 (1) TreeSet():构建一个空的树集 (2) TreeSet(Collection c): 构建一个树集,并且添加集合c中所有元素 (3) TreeSet(Comparator c): 构建一个树集,并且使用特定的比较器对其元素进行排序 “comparator比较器没有任何数据,它只是比较方法的存放器。这种对象有时称为函数对象。Map的entrySet()方法返回一个实现Map.Entry接口的对象集合。
集合中每个对象都是底层Map中一个特定的键/值对。 通过这个集合的迭代器,您可以获得每一个条目(唯一获取方式)的键或值并对值进行更改。当条目通过迭代器返回后,除非是迭代器自身的remove()方 法或者迭代器返回的条目的setValue()方法,其余对源Map外部的修改都会导致此条目集变得无效,同时产生条目行为未定义。 (1) Object getKey(): 返回条目的关键字 (2) Object getValue(): 返回条目的值 (3) Object setValue(Object value): 将相关映像中的值改为value,并且返回旧值 4.2. SortedMap接口 “集合框架”提供了个特殊的Map接口:SortedMap,它用来保持键的有序顺序。 SortedMap接口为映像的视图(子集),包括两个端点提供了访问方法。除了排序是作用于映射的键以外,处理SortedMap和处理SortedSet一样。 添加到SortedMap实现类的元素必须实现Comparable接口,否则您必须给它的构造函数提供一个Comparator接口的实现。TreeMap类是它的唯一一份实现。 “因为对于映射来说,每个键只能对应一个值,如果在添加一个键/值对时比较两个键产生了0返回值(通过Comparable的compareTo()方 法或通过Comparator的compare()方法),那么,原始键对应值被新的值替代。如果两个元素相等,那还好。但如果不相等,那么您就应该修改 比较方法,让比较方法和 equals() 的效果一致。”
(1) Comparator comparator(): 返回对关键字进行排序时使用的比较器,如果使用Comparable接口的compareTo()方法对关键字进行比较,则返回null (2) Object firstKey(): 返回映像中第一个(最低)关键字 (3) Object lastKey(): 返回映像中最后一个(最高)关键字 (4) SortedMap
subMap(Object fromKey, Object toKey): 返回从fromKey(包括)至toKey(不包括)范围内元素的SortedMap视图(子集) (5) SortedMap headMap(Object toKey): 返回SortedMap的一个视图,其内各元素的key皆小于toKey (6) SortedSet tailMap(Object fromKey): 返回SortedMap的一个视图,其内各元素的key皆大于或等于fromKey 4.3. AbstractMap抽象类 和其它抽象集合实现相似,AbstractMap 类覆盖了equals()和hashCode()方法以确保两个相等映射返回相同的哈希码。如果两个映射大小相等、包含同样的键且每个键在这两个映射中对 应的值都相同,则这两个映射相等。映射的哈希码是映射元素哈希码的总和,其中每个元素是Map.Entry接口的一个实现。因此,不论映射内部顺序如何, 两个相等映射会报告相同的哈希码。 4.4. HashMap类和TreeMap类 “集合框架”提供两种常规的 Map实现:HashMap和TreeMap (TreeMap实现SortedMap接口)。在Map 中插入、删除和定位元素,HashMap 是最好的选择。但如果您要按自然顺序或自定义顺序遍历键,那么TreeMap会更好。使用HashMap要求添加的键类明确定义了hashCode()和 equals()的实现。 这个TreeMap没有调优选项,因为该树总处于平衡状态。 4.4.1. HashMap类 为了优化HashMap空间的使用,您可以调优初始容量和负载因子。 (1) HashMap(): 构建一个空的哈希映像 (2) HashMap(Map m): 构建一个哈希映像,并且添加映像m的所有映射 (3) HashMap(int initialCapacity): 构建一个拥有特定容量的空的哈希映像
(4) HashMap(int initialCapacity, float loadFactor): 构建一个拥有特定容量和加载因子的空的哈希映像 4.4.2. TreeMap类 TreeMap没有调优选项,因为该树总处于平衡状态。 (1) TreeMap():构建一个空的映像树 (2) TreeMap(Map m): 构建一个映像树,并且添加映像m中所有元素 (3) TreeMap(Comparator c): 构建一个映像树,并且使用特定的比较器对关键字进行排序 (4) TreeMap(SortedMap s): 构建一个映像树,添加映像树s中所有映射,并且使用与有序映像s相同的比较器排序 4.5. LinkedHashMap类 LinkedHashMap扩展HashMap,以插入顺序将关键字/值对添加进链接哈希映像中。象LinkedHashSet一样,LinkedHashMap内部也采用双重链接式列表。 (1) LinkedHashMap(): 构建一个空链接哈希映像 (2) LinkedHashMap(Map m): 构建一个链接哈希映像,并且添加映像m中所有映射 (3) LinkedHashMap(int initialCapacity): 构建一个拥有特定容量的空的链接哈希映像 (4) LinkedHashMap(int initialCapacity, float loadFactor): 构建一个拥有特定容量和加载因子的空的链接哈希映像 (5) LinkedHashMap(int initialCapacity, float loadFactor, boolean accessOrder): 构建一个拥有特定容量、加载因子和访问顺序排序的空的链接哈希映像 “如果将accessOrder设置为true,那么链接哈希映像将使用访问顺序而不是插入顺序来迭 代各个映像。每次调用get或者put方法时,相关的映射便从它的当前位置上删除,然后放到链接式映像列表的结尾处(只有链接式映像列表中的位置才会受到影响,哈希表元则不受影响。哈希表映射总是待在对应于关键字的哈希码的哈希表元中)。” “该特性对于实现高速缓存的“删除最近最少使用”的原则很有用。例如,你可以希望将最常访问的映射保存在内存中,并且从数据库中读取不经常访问的对象。 当你在表中找不到某个映射,并且该表中的映射已经放得非常满时,你可以让迭代器进入该表,将它枚举的开头几个