nefu1162

Single boy

Problem:1162

Time Limit:5000ms

Memory Limit:65535K

Description

Today is Christmas day. There are n single boys standing in a line. They are numbered form 1 to n from left to right. The i-th single boy has ai single strength. They are singing single boy Christmas song! Single boy,single boy, single all the way, having party together and turning into gay! Hey! 
A group of single boys is non-empty contiguous segment of the line. The size of a group is the number of single boys in that group. The single strength of a group is the minimum single strength of the single boy in that group.
Now we want to know for each x such that 1<=x<=n the maximum single strength among all groups of size x.

Input

The first line of input contains T(<=30), the test cases.
For each test case, the first line is a integer n(1 <= n <= 2*10^5), the number of single boys. 
The second line contains n integers [1,10^9] separated by space, the single strength of each single boy.

Output


Print n integers in one line. For each x from 1 to n, print the maximum strength among all groups of size x.

Sample Input

1
10
1 2 9 3 8 2 2 10 19 6

Sample Output

19 10 6 2 2 2 2 2 2 1

Hint

Source



/**
    题意:n个数,(1<=k<=n),在n个数中连续的k个数为一个区间长度,一共有n-k+1个区间,
    每个区间选出区间中的最小值min[j](1<=j<=n-k+1),然后在n-k+1个区间中选出最大的
    min[j],得到max[i](1<=i<=k),然后按k=1~n顺序输出max[i].
    由于数据太大,暴力模拟寻找太慢不能实现,所以我们想到的是求 以num[i]为最小值
    的区间长度,然后选择区间长度相等Max(num[i]),开始我用了暴力寻找区间,由于数据
    太大,TLE了,后来学习别人方法,用栈求得区间长度,我们把以num[i]为最小值的区间
    的左右边界求出来,右边界-左边界就是区间长度;
    用栈求区间左右边界:先求左边界后求右边界,开始将下标0入栈,我们的数组是从1
    开始的,然后比较以栈顶元素为下标的值是否大于等于当前值,是的话出栈,直到比当前
    值小,当前值的左边界就等于当前下标-栈顶元素+1,最后每次都要把当前下标入栈,
    求右边界完全一样。
*/
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <stack>
using namespace std;
const int maxn=3000000;
struct ac
{
    int num;
    int l,r;
}d[maxn];
int ans[maxn];
stack<int>sta;
int main()
{
    int t,n,Top,dn;
    scanf("%d",&t);
    while(t--)
    {
        int flag=0;
        scanf("%d",&n);
        d[0].num=0;///以0 ,n+1为下标的值为0.
        d[n+1].num=0;

        sta.push(0);///压入0下标
        for(int i=1; i<=n; i++)
        {
            scanf("%d",&d[i].num);
            while(!sta.empty())///求左边界
            {
                Top=sta.top();
                if(d[Top].num>=d[i].num)///比较当前值与以栈顶元素为下标的值
                    sta.pop();
                else
                    break;
            }
            Top=sta.top();
            d[i].l=Top+1;///左边界
            sta.push(i);///每次压入当前下标
        }
        while(!sta.empty())
        sta.pop();

        sta.push(n+1);///求右边界,压入下标n+1
        for(int i=n; i>=1; i--)
        {
            while(!sta.empty())
            {
                Top=sta.top();
                if(d[Top].num>=d[i].num)
                    sta.pop();
                else
                    break;
            }
            Top=sta.top();
            d[i].r=Top-1;
            sta.push(i);
        }
        while(!sta.empty())
            sta.pop();
        memset(ans,0,sizeof(ans));
        for(int i=1; i<=n; i++)///求ans,每次都更新 以区间长度为dn的最大值
        {
              dn=d[i].r-d[i].l+1;
              ans[dn]=max(ans[dn],d[i].num);
        }
        for(int i=n-1;i>=1;i--)///有些区间长度是找不到,那么用比他区间长度大的更新其值
        {
            if(ans[i]<ans[i+1])
                ans[i]=ans[i+1];
        }
        
        printf("%d",ans[1]);
        for(int i=2; i<=n; i++)
            printf(" %d",ans[i]);
        printf("\n");
    }
    return 0;
}
/**
  样例值          1  2  9  3  8  2  2  10  19  6
以该值为最
小值的区间长度   10  9  1  3  1  9  9   2   1  3
    区间长度为 10有1 ,max[10]=1;
    区间长度为 9 有2,2,2,max[9]=2;
    区间长度为 4-8 都没有,即为0,那么以区间为长度为9的更新max[4-8]=2;
    区间长度为 3有 3,6, max[3]=6;
    区间长度为 2有 10,  max[2]=10;  
    区间长度为 1有 9,8,19,max[1]=19;
    为什么以区间更大的修改,以为区间越大,数值越小,区间小的的最大值不可能大于
    区间大的最大值
    
*/


你可能感兴趣的:(nefu1162)