题目链接
题意:给定一些人,每个人有一个分组,现在要每个人选一个分组,使得所有分组中最大的人数最小,问这个最小值是多少
思路:二分答案,然后利用最大流去判定,源点往每个人建一条边容量为1,每个人往各自的分组建一条边,容量为1,分组向汇点建一条边,容量为二分出来的值,这样跑一下最大流如果最大流等于n,就是能满足
代码:
#include <cstdio> #include <cstring> #include <queue> #include <algorithm> #include <map> #include <string> #include <iostream> #include <set> using namespace std; const int MAXNODE = 1505; const int MAXEDGE = 1100005; typedef int Type; const Type INF = 0x3f3f3f3f; struct Edge { int u, v; Type cap, flow; Edge() {} Edge(int u, int v, Type cap, Type flow) { this->u = u; this->v = v; this->cap = cap; this->flow = flow; } }; struct Dinic { int n, m, s, t; Edge edges[MAXEDGE]; int first[MAXNODE]; int next[MAXEDGE]; bool vis[MAXNODE]; Type d[MAXNODE]; int cur[MAXNODE]; vector<int> cut; void init(int n) { this->n = n; memset(first, -1, sizeof(first)); m = 0; } void add_Edge(int u, int v, Type cap) { edges[m] = Edge(u, v, cap, 0); next[m] = first[u]; first[u] = m++; edges[m] = Edge(v, u, 0, 0); next[m] = first[v]; first[v] = m++; } bool bfs() { memset(vis, false, sizeof(vis)); queue<int> Q; Q.push(s); d[s] = 0; vis[s] = true; while (!Q.empty()) { int u = Q.front(); Q.pop(); for (int i = first[u]; i != -1; i = next[i]) { Edge& e = edges[i]; if (!vis[e.v] && e.cap > e.flow) { vis[e.v] = true; d[e.v] = d[u] + 1; Q.push(e.v); } } } return vis[t]; } Type dfs(int u, Type a) { if (u == t || a == 0) return a; Type flow = 0, f; for (int &i = cur[u]; i != -1; i = next[i]) { Edge& e = edges[i]; if (d[u] + 1 == d[e.v] && (f = dfs(e.v, min(a, e.cap - e.flow))) > 0) { e.flow += f; edges[i^1].flow -= f; flow += f; a -= f; if (a == 0) break; } } return flow; } bool Maxflow(int s, int t, int tot) { this->s = s; this->t = t; Type flow = 0; while (bfs()) { for (int i = 0; i < n; i++) cur[i] = first[i]; flow += dfs(s, INF); } return flow == tot; } void MinCut() { cut.clear(); for (int i = 0; i < m; i += 2) { if (vis[edges[i].u] && !vis[edges[i].v]) cut.push_back(i); } } } gao; const int N = 1005; const int M = 505; int n, m, cnt[M]; vector<int> f[N]; char str[100005]; bool judge(int c) { gao.init(n + m + 2); int s = 0, t = n + m + 1; for (int i = 0; i < n; i++) { gao.add_Edge(0, i + 1, 1); for (int j = 0; j < f[i].size(); j++) { gao.add_Edge(i + 1, f[i][j] + n + 1, 1); } } for (int i = 0; i < m; i++) gao.add_Edge(n + i + 1, t, c); return gao.Maxflow(s, t, n); } int main() { while (~scanf("%d%d", &n, &m) && n || m) { memset(cnt, 0, sizeof(cnt)); while ((getchar()) != '\n'); for (int i = 0; i < n; i++) { f[i].clear(); gets(str); int len = strlen(str); int sum = 0; int flag = 0; for (int j = 0; j < len; j++) { if (str[j] >= '0' && str[j] <= '9') { flag = 1; sum = sum * 10 + str[j] - '0'; } else { if (flag) { f[i].push_back(sum); cnt[sum]++; } flag = 0; sum = 0; } } if (flag) { f[i].push_back(sum); cnt[sum]++; } } int l = 0, r = 0; for (int i = 0; i < m; i++) r = max(r, cnt[i]); while (l < r) { int mid = (l + r) / 2; if (judge(mid)) r = mid; else l = mid + 1; } printf("%d\n", l); } return 0; }