三种素数求法



(整理自网络)

       素数是除了1和它本身之外再不能被其他数整除的自然数。由于找不到一个通项公式来表示所有的素数,所以对于数学家来说,素数一直是一个未解之谜。像著名的哥德巴赫猜想、孪生素数猜想,几百年来不知吸引了世界上多少优秀的数学家。尽管他们苦心钻研,呕心沥血,但至今仍然未见分晓。
       求素数的方法有很多种,最简单朴素的方法是根据素数的定义来求。对于一个自然数N,用大于1小于N的各个自然数都去除一下N,如果都除不尽,则N为素数,否则N为合数。


【1】常规法 

       当一个数n不能被2到sqrt(n)之间的任意一个数(闭区间)整除,就是素数;否则为合数。

【2】用筛法
      简单介绍一下厄拉多塞筛法。厄拉多塞是一位古希腊数学家,他在寻找素数时,采用了一种与众不同的方法:先将2-N的各数写在纸上:


      在2的上面画一个圆圈,然后划去2的其他倍数;第一个既未画圈又没有被划去的数是3,将它画圈,再划去3的其他倍数;现在既未画圈又没有被划去的第一个数是5,将它画圈,并划去5的其他倍数……依次类推,一直到所有小于或等于N的各数都画了圈或划去为止。这时,表中画了圈的以及未划去的那些数正好就是小于 N的素数。

      这很像一面筛子,把满足条件的数留下来,把不满足条件的数筛掉。由于这种方法是厄拉多塞首先发明的,所以,后人就把这种方法称作厄拉多塞筛法。
在计算机中,筛法可以用给数组单元置零的方法来实现。具体来说就是:首先开一个数组:a[i],i=1,2,3,…,同时,令所有的数组元素都等于下标值,即a[i]=i,当i不是素数时,令a[i]=0 。当输出结果时,只要判断a[i]是否等于零即可,如果a[i]=0,则令i=i+1,检查下一个a[i]。
筛法是计算机程序设计中常用的算法之一。

【3】公式法:6N±1
     任何一个自然数,总可以表示成为如下的形式之一:
                             6N,6N+1,6N+2,6N+3,6N+4,6N+5 (N=0,1,2,…)
     显然,当N≥1时,6N,6N+2,6N+3,6N+4都不是素数,只有形如6N+1和6N+5的自然数有可能是素数。所以,除了2和3之外,所有的素数都可以表示成6N±1的形式(N为自然数)。根据上述分析,我们可以构造另一面筛子,只对形如6 N±1的自然数进行筛选,这样就可以大大减少筛选的次数,从而进一步提高程序的运行效率和速度。
      在程序上,我们可以用一个二重循环实现这一点,外循环i按3的倍数递增,内循环j为0-1的循环,则2(i+j)-1恰好就是形如6N±1的自然数

你可能感兴趣的:(算法,素数)