You are given two circles. Find the area of their intersection.
The first line contains three integers x1, y1, r1 ( - 109 ≤ x1, y1 ≤ 109, 1 ≤ r1 ≤ 109) — the position of the center and the radius of the first circle.
The second line contains three integers x2, y2, r2 ( - 109 ≤ x2, y2 ≤ 109, 1 ≤ r2 ≤ 109) — the position of the center and the radius of the second circle.
Print the area of the intersection of the circles. The answer will be considered correct if the absolute or relative error doesn't exceed10 - 6.
0 0 4 6 0 4
7.25298806364175601379
0 0 5 11 0 5
0.00000000000000000000
大致题意:求两个元的相交面积
原来做过hdu5120这道题,直接套用这题给的模版,结果一直wa
这组数据(0 1000000000 1 0 0 1000000000)错了,原来是模版有错误的地方
重新找了另一个模版
#include <cstdio> #include <cstring> #include <cmath> #include <iostream> #include <algorithm> using namespace std; typedef long double ld; typedef long long ll; ld x[2],y[2],r[2]; const ld pi = acosl(-1); inline ld sqr(ld x) { return x*x; } inline ll sqrl(ll x) { return x*x; } inline ld fcos(ld a, ld b, ld c) { return acosl((a*a+b*b-c*c)/(2*a*b)); } inline ld cut(ld ang, ld r) { ld s1 = ang*r*r; ld s2 = sinl(ang)*cosl(ang)*r*r; return s1 - s2; } double solve() { if(r[0] > r[1]) { swap(r[0],r[1]); swap(x[0],x[1]); swap(y[0],y[1]); } ll dx = x[0]-x[1], dy = y[0]-y[1]; ll ds = sqrl(dx)+sqrl(dy); if(ds >= sqrl(r[0]+r[1])) return 0; ld d = sqrtl(ds); if(d+r[0] <= r[1]) return sqr(r[0])*pi; ld ang[2]; ang[0] = fcos(d,r[0],r[1]); ang[1] = fcos(d,r[1],r[0]); return cut(ang[0],r[0]) + cut(ang[1],r[1]); } int main() { while(cin>>x[0]>>y[0]>>r[0]>>x[1]>>y[1]>>r[1]) { printf("%.6lf\n",solve()); } return 0; }